检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈岩砚 魏蕾[2] 陈芳芳[1] 张京伟[1] CHEN Yan-yan;WEI Lei;CHEN Fang-fang;ZHANG Jing-wei(Department of Breast and Thyroid Surgery,Zhongnan Hospital of Wuhan University,Hubei Key Laboratory of Tumor Biological Behaviors,Hubei Cancer Clinical Study Center,Wuhan 430071,China;Department of Pathology and Pathophysiology,Hubei Provincial Key Laboratory of Developmentally Originated Disease,TaiKang Medical School(School of Basic Medical Sciences),Wuhan University,Wuhan 430071,China)
机构地区:[1]武汉大学中南医院甲乳外科,武汉430071 [2]武汉大学泰康医学院病理生理教研室,武汉430071
出 处:《微循环学杂志》2024年第2期75-81,共7页Chinese Journal of Microcirculation
基 金:武汉大学中南医院转化医学及交叉学科研究联合基金(ZNJC202236)。
摘 要:目的:挖掘浸润性乳腺癌复发的独立预后基因并构建浸润性乳腺癌复发风险预测模型。方法:应用公共数据库,使用一致性聚类,根据肿瘤血管生成相关基因表达将样本分组并进行差异分析。通过单因素Cox回归和最小绝对收缩和选择算子(Lasso)回归,以无复发生存期(RFS)为观测指标,结合患者临床特征,建立浸润性乳腺癌复发风险预测模型。结果:鉴定了13个基于肿瘤血管生成的复发独立预后基因(PLS3、IGFBP4、CXCL14、HIST1H2BH、EMC9、H2BFS、S100A9、GJA1、NID2、ID3、PDZD2、GRP、FMO1),并结合患者TNM分期建立了浸润性乳腺癌复发风险预测模型。结论:基于肿瘤血管生成的13个基因复发风险预测模型具有良好的预测性能,可以准确预测浸润性乳腺癌患者的复发风险。Objective:To identify independent prognostic genes for the recurrence of invasive breast cancer and construct a risk prediction model for recurrent invasive breast cancer.Method:Public databases were applied to group samples according to angiogenesis-related gene expression using consistent clustering and performed differential analysis.Differential genes were screened by univariate Cox regression and the least absolute shrinkage and selection operator(Lasso)regression,and a recurrence risk prediction model for invasive breast cancer was constructed by combining the clinical characteristics of the patients with the recurrence-free survival(RFS)as an observational index.Results:13 angiogenesis-based recurrence-independent prognostic genes(PLS3,IGFBP4,CXCL14,HIST1H2BH,EMC9,H2BFS,S100A9,GJA1,NID2,ID3,PDZD2,GRP,FMO1)were identified.The invasive breast cancer recurrence risk prediction model was established in conjunction with patients'TNM stage.Conclusion:The 13-gene recurrence risk prediction model based on angiogenesis has promising predictive performance and can accurately predict the recurrence risk of invasive breast cancer patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62