检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王鹏飞[1] 李若欣 于凯 Wang Pengfei;Li Ruoxin;Yu Kai(Qingdao Innovation and Development Centre of Harbin Engineering University,Qingdao 266000,China;College of Shipbuilding Engineering,Harbin Engineering University,Harbin 15000,China)
机构地区:[1]哈尔滨工程大学青岛创新发展中心,青岛266400 [2]哈尔滨工程大学船舶工程学院,哈尔滨150000
出 处:《水动力学研究与进展(A辑)》2024年第1期104-108,共5页Chinese Journal of Hydrodynamics
基 金:国家自然科学基金(52301366)。
摘 要:相较于传统的螺旋桨推进方式,水下仿生推进具有灵活、高效及对环境干扰小等优势。该文在求解不可压N-S方程和牛顿第二定律的基础上,嵌入PID控制算法,构建CFD-PID求解器,模拟主动控制下的仿生鱼自推进运动。通过PID算法动态调节仿生鱼摆幅,间接控制其速度,使仿生鱼可以达到任意特定的收敛速度。与常规方式自推进相比,PID控制自推进能更快地加速到预定速度,且在加速时期产生更大尺度的涡,最终的动态平衡状态则与常规方式自推进一致。Underwater bionic propulsion has several advantages over traditional propeller propulsion methods, such as flexibility,efficiency, and less environmental impact. In this paper, on the basis of solving the incompressible N-S equation and Newton's second law, the PID control algorithm is embedded, and the CFD-PID solver is constructed to simulate the self-propelled motion of the bionic fish under active control. The speed of the bionic fish is indirectly controlled by dynamically adjusting the foil amplitude through a PID controller, allowing it to achieve any specific convergence velocity. Compared with conventional self-propulsion,PID-controlled self-propulsion can accelerate to a predetermined velocity faster, generate larger-scale vortices during the acceleration period, and achieve a dynamic equilibrium state that is consistent with conventional self-propulsion.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49