检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡媛[1] 华曦帆 刘卫[2] 江志豪 HU Yuan;HUA Xifan;LIU Wei;JIANG Zhihao(College of Engineering Science and Technology,Shanghai Ocean University,Shanghai 201306,China;Merchant Marine College,Shanghai Maritime University,Shanghai 201306,China)
机构地区:[1]上海海洋大学工程学院,上海201306 [2]上海海事大学商船学院,上海201306
出 处:《遥感信息》2024年第2期28-35,共8页Remote Sensing Information
基 金:国家自然科学基金(52071199)。
摘 要:针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测。通过深层的网络结构提取DDM多层次特征进行海冰海水分类,以提高海冰检测的精度和稳定性。实验结果表明,与美国国家海洋和大气管理局地表类型数据对比,所提出的基于VGG16海冰检测方法检测准确率为98.02%,有效提升了海冰检测的准确率和稳定性。To address the problems of high noise and low accuracy in the melting period of delay-Doppler map(DDM)data in global navigation satellite system-reflection(GNSS-R)sea ice detection,the VGG16 convolutional neural network model is proposed to be applied to sea ice detection.The multi-level features of DDM are extracted by deep network structure to improve the accuracy and stability of sea ice detection.The experimental results show that the detection accuracy of the proposed VGG16-based sea ice detection method is 98.02%compared with the National Oceanic and Atmospheric Administration(NOAA)surface type data,which effectively improves the accuracy and stability of sea ice detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222