基于BP神经网络算法的高模量混合料HMM-13级配优化设计研究  

Research on the Optimization Design of HMM-13 Grading forHigh Modulus Mixtures Based on BP Neural Network Algorithm

在线阅读下载全文

作  者:吴林 张辉 赵梦龙 李庆祥 WU Ling;ZHANG Hui;ZHAO Menglong;LI Qingxiang(Suzhou Transport Investment and Construction Management Co.,Ltd.,Suzhou,215000;Jiangsu Sinoroad Engineering Technology Research Institute Co.,Ltd.,Nanjing 211899)

机构地区:[1]苏州交投建设管理有限公司,苏州215000 [2]江苏中路工程技术研究院有限公司,南京211806

出  处:《石油沥青》2024年第1期33-40,共8页Petroleum Asphalt

摘  要:空隙率是高模量混合料HMM-13配合比设计中重要指标。通过成型不同配合比条件下的高模量混合料旋转压实试件,测试高模量混合料的空隙率,以关键筛孔尺寸为13.2 mm(K_(1))、4.75 mm(K_(2))、2.36 mm(K_(3))、0.075 mm(K_(4))的通过率及综合油石比(O/S)作为输入参数,空隙率(V)作为输出参数,采用双隐含层BP神经网络算法,建立了高模量混合料HMM-13体积指标预测模型,进行了关键筛孔通过率对旋转压实试件空隙率的敏感性研究。研究结果表明,建立的模型误差小于1%,泛化能力强,可用于高模量混合料体积指标的预测;当90%<K_(1)<93%,45%<K_(2)<50%,25%<K_(3)<34%,6.6%<K_(4)<6.9%,O/S≥5.2%时,可满足混合料空隙率1.5%~2.5%要求。Voids Content is an important indicator in the mix design of high modulus mixture HMM-13.This article tests the porosity of high modulus mixtures by forming rotating compaction specimens under different mix ratio conditions.The key mesh sizes of 13.2 mm(K_(1)),4.75 mm(K_(2)),2.36 mm(K_(3)),0.075 mm(K_(4))and the comprehensive oil stone ratio(O/S)are used as input parameters,and the voids(V)is used as output parameter.The double hidden layer BP neural network algorithm is used.A volume index prediction model for high modulus mixture HMM-13 was established,and the sensitivity of key sieve pass rate to the porosity of rotary compacted specimens was studied.The research results indicate that the established model has an error of less than 1%and strong generalization ability,which can be used for predicting the volume index of high modulus mixtures;When 90%<K_(1)<93%,45%<K_(2)<50%,25%<K_(3)<34%,6.6%<K_(4)<6.9%,and O/S≥5.2%,the requirement of mixture porosity of 1.5%~2.5%can be met.

关 键 词:高模量沥青混合料 空隙率 关键筛孔 人工神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] U414[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象