检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:裴晨阳 张廷龙[1] 高焕霖 张青峰[1] PEI Chen-yang;ZHANG Ting-long;GAO Huan-lin;ZHANG Qing-feng(College of Natural Resource and Environment,Northwest A&F University,Yangling 712100,Shaanxi,China)
机构地区:[1]西北农林科技大学资源环境学院,陕西杨陵712100
出 处:《西北林学院学报》2024年第3期171-178,共8页Journal of Northwest Forestry University
基 金:陕西省自然科学基础研究计划(2021JZ-17);国家自然科学基金(41701239、41301451);F2021422001/联盟软科学-陕西省农业土地空间规划及治理研究(LMR202204)。
摘 要:以Landsat-8和高分一号数据为例,采用仅有光谱特征、3种纹理特征(概率统计、灰度共生矩阵、空间异质运算)辅助光谱特征的方法提取影像空-谱信息,并通过支持向量机分类器进行基于像元的地物分类。结果表明:1)纹理特征辅助光谱特征的地物分类精度明显优于仅使用光谱特征的分类,可提高8.62%~24.36%;2)相较于概率统计、灰度共生矩阵方法结果,空间异质运算结果分类精度在GF-1影像中分别提高了13.31%和2.03%,在Landsat-8影像中分别提高了11.62%和7.79%;3)对于线状地物,相较于概率统计、灰度共生矩阵方法结果,空间异质运算结果分类精度在GF-1数据中分别提高了29.31%和0.80%,在Landsat-8数据中分别提高了11.90%和6.64%,有效减小了分类误差。因此,空间异质运算提取的空间结构信息辅助光谱特征的分类方法能显著改善遥感图像的分类精度,为空间结构信息辅助遥感影像地物分类及线状地物的提取提供一种新的思路和方法。In order to solve the problems of texture extraction methods existed in remote sensing image classification,such as narrow recognition range,difficult boundary distinction,low model applicability and low classification accuracy of linear ground objects,this paper explored how to make full use of high order texture features reflected by spatial heterogeneity operation among remote sensing image elements to improve classification accuracy.Landsat-8 and GF-1 data were taken as examples,spectral feature sand three texture features(occurrence measures,gray co-occurrence matrix,spatial heterogeneity operation)combined with spectral features were used to extract spatial and spectral information of remote sensing images,then pixel-based support vector machine classifier was used to classify ground objects.The results indicated that 1)the classification accuracy of texture features combined with spectral features was significantly better than that of spectral features,and the overall accuracy could be improved by 8.62%-24.36%.2)Compared with the results of occurrence measures and gray co-occurrence matrix,the classification accuracies of spatial heterogeneity operation in GF-1 data improved by 13.31%and 2.03%respectively,and those in Landsat-8 data improved by 11.62%and 7.79%respectively.3)For land cover types with linear features,compared with the results of occurrence measures and gray co-occurrence matrix,the average classification accuracies of spatial heterogeneity operation in GF-1 data increased by 29.31%and 0.80%respectively,and those in Landsat-8 data increased by 11.90%and 6.64%,respectively,effectively reducing classification errors.Therefore,the classification method of spatial heterogeneity operation to extract structural information combined with spectral features can obviously solve the current classification difficulties,and provide a new way for spatial structure information assisted remote sensing image land use classification and linear feature extraction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.200.8