基于用户画像的高校采购评审专家推荐算法  被引量:3

Expert recommendation algorithm for university procurement review based on user portraits

在线阅读下载全文

作  者:房志明[1] 吴鑫卓 林原[3] 张昊男 于青[4] 许侃[2] FANG Zhiming;WU Xinzhuo;LIN Yuan;ZHANG Haonan;YU Qing;XU Kan(Campus Management and Maintenance Center,Dalian University of Technology,Dalian 116024,China;School of Computer Science and Technology,Dalian University of Technology,Dalian 116024,China;School of Public Administration and Policy,Dalian University of Technology,Dalian 116024,China;Procurement and Tendering Center,Dalian University of Technology,Dalian 116024,China)

机构地区:[1]大连理工大学校园管理与修缮中心,辽宁大连116024 [2]大连理工大学计算机科学与技术学院,辽宁大连116024 [3]大连理工大学公共管理学院,辽宁大连116024 [4]大连理工大学采购与招标中心,辽宁大连116024

出  处:《实验技术与管理》2024年第4期228-237,共10页Experimental Technology and Management

基  金:国家社会科学基金项目(20BTQ074)。

摘  要:该文设计了一种可调参的混合推荐算法,融合AUC-MF算法与基于专家画像及项目画像的抽取算法,以提高高校随机抽取评审专家的专业匹配度,解决数据稀疏和冷启动问题。该文以某高校近6年政府采购项目历史评审数据以及项目文本信息构建数据集,对算法进行验证,该算法可有效缓解高校自选评审专家过程中的数据稀疏和冷启动问题,提高随机抽取专家的专业匹配度。[Objective]With the advancement of“government function reform”in the scientific research field,central universities and research institutes can now select experts for government procurement projects involving complex technologies.Currently,two expert selection methods are mainly used:self-selection and database recommendation.The self-selection method enhances the autonomy of university procurement but also brings certain integrity risks.The database recommendation method relies on the precision of the professional settings in the review expert database.It may face issues such as reduced recommendation efficiency or mismatches in expertise.However,it effectively reduces the risk of corruption.[Methods]Considering the correlation and continuity of expertise among self-selected review experts in universities,this study aims to enhance the matching accuracy of the database recommendation method and address data sparsity issues and the cold start problem.A tunable hybrid recommendation algorithm was designed by combining the area under the curve AUC-MF model with an expert and project portrait-based recommendation method.The AUC-MF algorithm converts the recommendation problem into a classification problem by treating reviewed and unreviewed projects as positive and negative samples.Furthermore,it converts the data sparsity problem into a data imbalance problem,improves the matrix factorization algorithm by maximizing the AUC,and optimizes the gradient descent algorithm using LambdaMF.It can better solve the data sparsity problem in the expert sample of the university procurement project review.The recommendation algorithm models expert and project portraits using text mining,incorporating dynamic attributes(project reviews)and static attributes(expertise)for expert portraiture and using project names and summaries for project portraiture.Combining expert and project portraits as input and applying logistic regression for recommendations substantially addresses the cold start problem.[Results]Experimental results

关 键 词:高校采购 专家推荐 矩阵分解 专家画像 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] F812.45[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象