检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪家平 贺福强[1] 谢丹 周阳 史广 JI Jiaping;HE Fuqiang;XIE Dan;ZHOU Yang;SHI Guang(School of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
出 处:《智能计算机与应用》2024年第3期98-103,共6页Intelligent Computer and Applications
摘 要:航空发动机涡轮叶片的缺陷,影响发动机可靠性与使用寿命,基于计算机视觉与深度学习技术进行叶片缺陷的自动化检测具有重要现实意义。但是,涡轮叶片图像采集环境的高度非结构化、缺陷形式高差异性,为准确的缺陷识别带来困难。针对上述问题,提出了深度特征嵌入先验网络,其核心通过引入缺陷形状先验的特征嵌入层,准确刻画缺陷的形状特征,提高模型在小样本情况下的分类准确率。实验结果表明,所提方法在小样本叶片缺陷识别问题上取得了优越性能。Defects in aero-engine turbine blades affect engine reliability and service life,and automated defect detection based on computer vision and deep learning technologies is of practical importance.However,the highly unstructured environment of turbine blade image acquisition and the substantial variation in defect forms pose challenges to accurate defect identification.To address these issues,a deep feature embedding prior network is proposed.The core of this approach involves introducing a feature embedding layer with defect shape prior knowledge to accurately capture the shape characteristics of defects,thereby improving the classification accuracy of the model under small sample conditions.Experimental results demonstrate that the proposed method achieves superior performance in small sample turbine blade defect recognition tasks.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7