检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈明虎 李程[2] 涂刚毅 施育鑫 朱勇刚 CHEN Minghu;LI Cheng;TU Gangyi;SHI Yuxin;ZHU Yonggang(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;Sixty-third Research Institute,National University of Defense Technology,Nanjing 210007,China)
机构地区:[1]南京信息工程大学电子与信息工程学院,南京210044 [2]国防科技大学第六十三研究所,南京210007
出 处:《电子信息对抗技术》2024年第3期86-94,共9页Electronic Information Warfare Technology
摘 要:通信干扰信号的分类识别作为通信抗干扰的前提和基础,被广泛运用于无线通信和通信电子战等诸多领域。从通信干扰信号分类识别的基本原理出发,将分类识别方法分为基于人工特征提取(Manual Feature Extraction,MFE)和自动特征学习(Automatic Feature Learning,AFL)两大类进行介绍。系统阐述了两类方法的区别,并对比分析了不同方法的特点和性能。最后,分析了该领域面临的挑战,并对未来的研究方向进行了展望。As a prerequisite and foundation for communication anti-jamming,the classification and recognition of communication jamming signals are widely used in wireless communication and communication electronic warfare.Based on the basic principles of communication jamming signal classification and recognition,classification and recognition methods are divided into two categories:manual feature extraction(MFE) and automatic feature learning(AFL).The differences between the two types of methods are described systematically,and the characteristics and performance of different methods are compared and analyzed.Finally,the challenges in this field are analyzed,and the future research directions are prospected.
关 键 词:通信抗干扰 干扰信号分类识别 人工特征提取 自动特征学习
分 类 号:TN975[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.93.225