检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李捷 黄文斯 Li Jie;Huang Wensi(Shipbuilding Technology Research Lnstitute,Shanghai 200030,China;Wuhan Institute of Marine Electric Propulsion,Wuhan 430064,China)
机构地区:[1]上海船舶工艺研究所,上海市200030 [2]武汉船用电力推进装置研究所,武汉430064
出 处:《船电技术》2024年第6期73-78,共6页Marine Electric & Electronic Engineering
摘 要:为了增强CFAST模型的预测精度和应对模型误差,本文提出一种基于LSTM的深度神经网络模型,结合趋势特征向量算法,预测火灾烟气流动的趋势和温度分布。该模型考虑了舱室火灾蔓延度和火灾扩散度等指标,通过提取CFAST预测的火灾时间序列中的趋势特征,并通过LSTM网络的迭代训练过程,校准CFAST的预测偏差,实现对火灾烟气流动和温度分布的高效预测。最终基于船舱火灾典型案例的仿真试验,验证了本文所设计优化方法对舱室火灾蔓延预测的性能。In order to enhance the prediction accuracy of the CFAST model and deal with model errors,this paper proposes a deep neural network model based on LSTM,combined with the trend feature vector algorithm,to predict the trend and temperature distribution of fire smoke flow.The model takes into account indicators such as cabin fire spread and fire diffusion,extracts trend features in the fire time series predicted by CFAST,and calibrates the prediction deviation of CFAST through the iterative training process of the LSTM network to achieve fire smoke flow and efficient prediction of temperature distribution.Finally,the simulation test based on a typical case of cabin fire verifies the performance of the optimization method designed in this article in predicting cabin fire spread.
分 类 号:U647[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171