检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宇周亮 洪丽[1,2] 詹炳根 余其俊[1,2] YU Zhouliang;HONG Li;ZHAN Binggen;YU Qijun(School of Civil and Hydraulic Engineering,Hefei University of Technology,Hefei 230009,China;Anhui Key Laboratory of Civil Engineering Structures and Materials,Hefei 230009,China)
机构地区:[1]合肥工业大学土木与水利工程学院,安徽合肥230009 [2]土木工程结构与材料安徽省重点实验室,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2024年第5期712-720,共9页Journal of Hefei University of Technology:Natural Science
基 金:国家重点研发计划资助项目(2020YFC1909901)。
摘 要:文章基于深度学习算法对细骨料投影图像进行分割,通过对比传统阈值分割与PSPNet、DeepLab V3+、U-Net深度学习网络模型算法的分割结果对4种模型进行评价分析,同时实验对比细骨料2种等效粒径计算方法(单面投影法、双面投影法)的粒径和级配分布结果。结果表明:深度学习模型算法中U-Net网络模型的准确率、召回率、F平衡分数和交并比分别达到99.8%、88.1%、84.9%、84.3%,均优于对比组模型;对于3种不同粒径的单粒段细骨料,采用双面投影法计算出的细骨料等效粒径D d与实际细骨料粒径的偏差分别为1.40%、2.10%、3.12%;对于混合粒段骨料,采用等效粒径D d计算出的级配分布曲线更接近筛分法的实验结果,具有普遍适用性。研究结果可为细骨料径粒径和粒型参数的计算提取提供新的思路。In this paper,the deep learning algorithm is used to segment the fine aggregate projection image,and the evaluation and analysis on the traditional threshold segmentation and three deep learning network model algorithms(PSPNet,DeepLab V3+and U-Net)are conducted by comparing their segmentation results.At the same time,the results of grain size and gradation distribution of fine aggregate measured by two equivalent grain size calculation methods(single-sided projection method and double-sided projection method)were compared experimentally.The results show that the accuracy rate,recall rate,F-balance score and intersection ratio of U-Net network model in the deep learning model algorithm are 99.8%,88.1%,84.9%and 84.3%,respectively,which are superior to those of the control group model.For the single-grain segment fine aggregate with three different grain sizes,the deviation between the equivalent grain size D d of fine aggregate calculated by double-sided projection method and the actual fine aggregate size is 1.40%,2.10%and 3.12%,respectively.For the aggregate of mixed grain segment,the gradation distribution curve calculated by D d is closer to the experimental results of screening method,which has universal applicability.The results provide a new idea for the study of grain size and grain type parameters of fine aggregate.
关 键 词:细骨料 阈值分割 深度学习算法 等效粒径 细骨料粒型参数
分 类 号:TU502.4[建筑科学—建筑技术科学] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.36.122