油气储量计算  

在线阅读下载全文

出  处:《中国石油文摘》2023年第5期45-45,共1页CHINA PETROLEUM ABSTRACTS

摘  要:传统的哈伯特模型、翁氏模型等预测方法主要采用一元多项式拟合储量增长趋势,无法解决多变量对储量预测的影响,使得预测结果与客观实际存在较大差距。基于随机森林机器学习模型,建立了一种预测累计探明储量增长趋势的新方法。该方法通过相关性分析找出影响探明储量增长的可量化指标,从而确定模型训练中的输入属性,以同类盆地油田年度累计探明储量为评价单元,建立随机森林机器学习样本数据集,通过调整决策树个数和单个决策树的最大特征数,对模型进行优化训练,从而建立累计探明储量预测模型,成功解决了多因素叠加下储量非线性增长预测的难题。

关 键 词:随机森林 累计探明储量 决策树 机器学习 非线性增长 特征数 多项式拟合 储量预测 

分 类 号:TE15[石油与天然气工程—油气勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象