检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余萧雯 汤建钢 李丹阳 YU Xiao-wen;TANG Jian-gang;LI Dan-yang(College of Mathematics and Statistics,Yili Normal University,Yining,Xinjiang,835000,China;Institute of Applied Mathematics,Yili Normal University,Yining,Xinjiang,835000,China)
机构地区:[1]伊犁师范大学数学与统计学院,新疆伊宁835000 [2]伊犁师范大学应用数学研究所,新疆伊宁835000
出 处:《新疆师范大学学报(自然科学版)》2024年第3期55-63,共9页Journal of Xinjiang Normal University(Natural Sciences Edition)
基 金:伊犁师范大学提升学科综合实力专项项目(22XKZZ20)。
摘 要:拉回和推出也称为纤维积和纤维余积,是范畴论中两个重要的对偶概念,属于数学中诸多概念的抽象,具有丰富的内涵。文章在Riesz模范畴中研究拉回与推出的存在性和唯一性。首先引入拉回的概念,构造出满足Riesz模范畴中拉回概念的一个对象和一对态射,并证明拉回的存在性和唯一性;对偶地,在Riesz模范畴中引入同余关系的概念,在此基础上,运用同余关系作商,定义出了Riesz模的商的概念,再对推出的概念进行定义,构造出满足Riesz模范畴中推出概念的一个对象和一对态射,并证明推出的存在性和唯一性。ion of many concepts in mathematics,with rich connotations.In this paper,existence and uniqueness of pull-back and push-out are studied in the category of Riesz modules.Firstly the notion of pull-back is introduced by constructing an object and a pair of morphisms that satisfy the notion of pull-back in the category of Riesz modules,and prove the existence and uniqueness of pull-back.Dually,the notion of congruence relation is introduced in the category of Riesz modules,based on which the notion of quotient of Riesz modules is defined by applying the congruence relation as a quotient.Then,the notion of push-out is defined by constructing an object and a pair of morphisms that satisfy the notion of push-out in the category of Riesz modules,and prove the existence and uniqueness of push-out.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.94.189