Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant  

在线阅读下载全文

作  者:Hadis Azin Fakhrodin Mohammadi 

机构地区:[1]Department of Mathematics,University of Hormozgan,Bandar Abbas,P.O.Box 3995,Iran

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2024年第2期220-238,共19页高校应用数学学报(英文版)(B辑)

摘  要:It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.

关 键 词:Barycentric rational interpolation Volterra-Fredholm integral equations Gaussian quadrature Runge's phenomenon 

分 类 号:O241.83[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象