检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄远航 边山[1,2,3] 王春桃 HUANG Yuanhang;BIAN Shan;WANG Chuntao(College of Mathematics and Informatics,South China Agricultural University,Guangzhou 510642,China;Key Laboratory of Smart Agricultural Technology in Tropical South China,Ministry of Agriculture and Rural Affairs,Guangzhou 510642,China;Guangdong Provincial Key Laboratory of Intelligent Information Processing&Shenzhen Key Laboratory of Media Security,Shenzhen,Guangdong 518060,China)
机构地区:[1]华南农业大学数学与信息学院,广州510642 [2]农业农村部华南热带智慧农业技术重点实验室,广州510642 [3]广东省智能信息处理重点实验室深圳市媒体信息内容安全重点实验室,广东深圳518060
出 处:《计算机科学》2024年第S01期421-425,共5页Computer Science
基 金:广东省智能信息处理重点实验室(2023B1212060076);国家自然科学基金(62172165);广东省自然科学基金(2022A1515010325);广州市基础和应用基础研究项目(202201010742)。
摘 要:在多媒体取证中,高通滤波器是卷积神经网络常用的预处理层之一,用于抑制图像内容的影响,只强调高频特征。但与此同时,其他一些包含取证痕迹的有用信息也将被不加区别地剔除。为了解决这一问题,文中提出了一个简单而高效的高斯增强模块(Gaussian Enhancement Module,GEM)来提取“扩展的”高频特征,即在维持原有特征强度的基础上增强高频细节信息。GEM由两个连续的一维低通高斯滤波器组成,以获得一个模糊版本的特征图,并进一步得到相应的扩展高频残差。通过以高频残差作为空间掩膜,它可以自适应地强化脆弱和细微的低级取证特征,并防止在特征传递过程中出现衰减现象。在相机模型辨别数据集上进行实验,通过将该模块插入多个主流骨干网络,GEM仅仅带来非常轻微的模型复杂度的增加,网络性能和鲁棒性却显著提高,表明该模块支持“即插即用”,与特定的网络架构无关。In multimedia forensics,a high-pass filter is one of the commonly used pre-processing layers by convolutional neural network to depress the impact of image content and only highlight high-frequency features.However,some other useful information containing forgery traces would also be removed indiscriminately in the meantime.To address this issue,in this paper,a simple yet effective Gaussian enhancement module is proposed to extract“extended”high-frequency features,namely,reinforce high-frequency details while maintaining the original feature strength.The GEM comprises two successive low-pass Gaussian filters to acquire a blurry version of the feature map and further get the corresponding extended high-frequency residual.It can strengthen fragile and subtle low-level forgery features adaptively and prevent feature attenuation as well.Experiments are conducted on the camera-model identification dataset by plugging the module into several mainstream backbone networks,indicating that it supports“plug and play”and is non-related to the specific network architecture.The proposed GEM brings a significant improvement both in the performance and the robustness of networks with the slightly increased complexity of models.
关 键 词:相机模型辨别 深度学习 图像取证 高通滤波器 高斯增强
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.9.170