基于大数据技术的高职学生互动推荐算法设计与应用  被引量:1

Design and Application of Interactive Recommendation Algorithm for Vocational College Students Based on Big Data Technology

在线阅读下载全文

作  者:黄和尧 曾锦 HUANG Heyao;ZENG Jin(Zhaotong Health Vocational College,Zhaotong Yunnan 657000,China)

机构地区:[1]昭通卫生职业学院,云南昭通657000

出  处:《信息与电脑》2024年第6期47-49,共3页Information & Computer

基  金:2023年度昭通卫生职业学院科学研究基金项目立项课题“教育数字化转型背景下高职学生数字素养现状及影响因素研究”(项目编号:202301)。

摘  要:大数据技术通过处理和分析海量数据,为学生提供更加个性化、高效的学习建议和资源推荐。文章先介绍大数据技术在教育领域中的应用背景,随后详细阐述高职学生互动推荐算法的设计过程,包括数据的采集与预处理,以及算法开发的完整流程。此外,文章特别关注推荐算法在高职学生互动中的具体应用,如应用场景的描述、系统架构的构建、实施步骤的规划。系统阐述基于大数据技术的高职学生互动推荐算法的设计与应用,涵盖从数据采集、预处理到算法开发的全过程,以及该技术在实际教学互动中的应用实例和实施策略。Big data technology can provide students with more personalized and efficient learning suggestions and resource recommendations by processing and analyzing massive data.This paper first introduces the application background of big data technology in the field of education,and then elaborates in detail on the design process of interactive recommendation algorithms for vocational college students,including data collection and preprocessing,as well as the complete process of algorithm development.In addition,special attention has been paid to the specific application of recommendation algorithms in the interaction of vocational college students,such as the description of application scenarios,the construction of system architecture,and the planning of implementation steps.This paper systematically elaborates on the design and application of interactive recommendation algorithms for vocational college students based on big data technology,covering the entire process from data collection,preprocessing to algorithm development,as well as the application examples and implementation strategies of this technology in actual teaching interactions.

关 键 词:互动推荐算法 大数据技术 高职学生 系统架构 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象