检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞秋奔[1] 李银 PANG Qiuben;LI Yin(Department of Information Center,The First Affiliated Hospital of Guangxi Medical University,Nanning Guangxi 530021,China;Department of Day Surgery Center,The First Affiliated Hospital of Guangxi Medical University,Nanning Guangxi 530021,China)
机构地区:[1]广西医科大学第一附属医院信息中心,广西南宁530021 [2]中国移动通信集团广西有限公司网络运营中心,广西南宁530012
出 处:《信息与电脑》2024年第6期152-156,共5页Information & Computer
基 金:广西壮族自治区卫生健康委员会自筹经费科研课题(项目编号:Z20190784)。
摘 要:中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。The main focus of named entity recognition on Chinese electronic health record is the study of progress note documentation datasets in electronic health record.This paper proposes a study on named entity recognition of medical surgical anesthesia document datasets.By leveraging the A Lite Bidirectional Encoder Representation from Transformers(ALBERT)pre-trained model to fine-tune the dataset and utilizing the trainer in transformers to train the model,the article realizes the recognition of named entities for surgical anesthesia events and the acquisition of complex anesthesia medical quality control index values on medical surgical anesthesia documents.This research provides a reference idea for named entity recognition in surgical anesthesia documents,and a new solution for calculating complex anesthesia medical quality control index values.
关 键 词:命名实体识别 轻量级来自Transformer的双向编码器表示(ALBERT)模型 TRANSFORMERS 麻醉医疗质量控制指标 医疗手术麻醉文书
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38