检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田龙 朱智华 王立伟 于佳伟 王一帆[2] TIAN Long;ZHU Zhihua;WANG Liwei;YU Jiawei;WANG Yifan(Research Institute of Engineering Technology,PetroChina Xinjiang Oilfield Company,Karamay 834000,Xinjiang,China;College of Artificial Intelligence,China University of Petroleum(Beijing),Changping 102249,Beijing,China)
机构地区:[1]中国石油新疆油田分公司工程技术研究院,新疆克拉玛依834000 [2]中国石油大学(北京)人工智能学院,北京昌平102249
出 处:《新疆石油天然气》2024年第2期29-36,共8页Xinjiang Oil & Gas
基 金:国家重点研发计划“复杂油气智能钻井理论与方法”(2019YFA0708300);中国石油天然气集团公司与中国石油大学(北京)战略合作技术项目“钻完井人工智能理论与应用场景关键技术研究”(ZLZX2020-03)。
摘 要:岩石可钻性的评估在地质勘探和钻井工程中具有重要意义。传统的评价方法主要基于岩心可钻性测试结果,但受制于岩心获取困难和费用昂贵的限制,开发新的无监督学习方法变得愈发重要。针对这一问题,提出了基于测井大数据和无监督聚类算法的连续地层可钻性评估方法。首先,利用自组织映射神经网络对大量的测井数据进行聚类,将地层特征进行有效提取和分类;然后,通过分析每个聚类对应地层的机械钻速分布,将地层分成了6个可钻性等级,从而实现了对地层可钻性的有效评估。这项研究的核心价值在于利用了大数据和先进的无监督学习算法,克服了传统方法中对大量岩心可钻性测试结果的依赖,并取得了显著的成果。通过该方法成功对测试井地层进行了可钻性分级,并验证了其有效性。研究结果显示,随着可钻性等级的增加,地层所对应的平均机械钻速逐渐降低;并且与岩心实测法相比较,模型得到的岩石可钻性等级划分结果偏差不大。这一结果进一步印证了该方法在连续地层可钻性评估中的重要性和准确性。The evaluation of rock drillability is of great significance in geological prospecting and drilling engineering.The traditional evaluation methods are mainly based on the core drillability testing,but due to the technical difficulties and high costs of coring,new unsupervised learning methods have become increasingly important.This study proposes a continuous formation drillability evaluation method based on well logging big data and unsupervised clustering algorithm to address this issue.Firstly,a self-organizing mapping neural network is used to cluster a large amount of well logging data and effectively extracting and classifying stratigraphic features.Then,by analyzing the penetration rate distribution of the formation corresponding to each cluster,the formation is graded by six drillability levels,thus achieving effective evaluation of the formation drillability.The core value of this study lies in utilizing big data and advanced unsupervised learning algorithms to overcome the reliance on a large number of core drillability test results in traditional methods,and deliver significantly improved evaluation performance.Through this method,the drillability classification of formations of the test well is successfully carried out,which validates the effectiveness of the method.The research results show that as the drillability level increases,the average penetration rate of the formation gradually decreases,and compared with the core test method,no notable deviation of the rock drillability level classification results is observed.This finding further confirms the importance and accuracy of 29 this method in continuous formation drillability evaluation.
关 键 词:钻井 可钻性 机器学习 机械钻速 神经网络 大数据
分 类 号:TE24[石油与天然气工程—油气井工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239