菏泽市肺结核发病自回归移动平均模型的建立及其预测效果评价  被引量:2

Establishment of Autoregressive Integrated Moving Average Model of Tuberculosis Incidence in Heze City and Evaluation of its Prediction Effect

在线阅读下载全文

作  者:孙付胜[1] 刘洪敏[1] 王静 付刚 陈秀英[1] 皇甫蓓蓓[1] 刘增法 Sun Fusheng;Liu Hongmin;Wang Jing(Heze center for disease control and prevention(274000),Heze)

机构地区:[1]菏泽市疾病预防控制中心,274000 [2]山东省卫生健康委员会医疗管理服务中心

出  处:《中国卫生统计》2024年第2期185-189,共5页Chinese Journal of Health Statistics

基  金:山东省医药卫生科技发展计划(2016WS0090)。

摘  要:目的建立自回归移动平均模型(autoregressive integrated moving average model,ARIMA)并对2022年菏泽市肺结核发病数进行预测。方法以2010-2020年菏泽市肺结核病人月登记发病数为基础建立最优ARIMA模型,预测2021年发病数并与实际值比较,以此评估模型的预测效果,并对2022年发病趋势进行预测。结果菏泽市肺结核发病数呈现逐年下降趋势,并存在一定的季节变化,最优模型为ARIMA(0,1,1)(1,1,1)12,2021年拟合结果显示其总的预测误差率为2.59%,平均绝对百分比误差为17.76%,预测2022发病数为1644例,继续呈下降趋势,疫情态势平稳。结论ARIMA(0,1,1)(1,1,1)12模型能较好地预测菏泽市肺结核的短期发病趋势,但应根据监测数据变化加以修正,以提高预测精度。Objective An autoregressive integrated moving average model(ARIMA)was established to predict the incidence of tuberculosis in Heze in 2022.Methods Based on the monthly registered incidence of tuberculosis patients in Heze city from 2010 to 2020,the optimal ARIMA model was established to predict the incidence in 2021 and compare with the actual value,so as to evaluate the prediction effect and predict the incidence trend in 2022.Results The incidence of tuberculosis in Heze city showed a decreasing trend year by year,with certain seasonal changes.The optimal model was ARIMA(0,1,1)(1,1,1)12,the fitting results showed that the overall prediction error rate was 2.59%and the mean absolute percentage error was 17.76%in 2021.The number of cases predicted in 2022 was 1644,which continued to show a downward trend and the epidemic situation was stable.Conclusion ARIMA(0,1,1)(1,1,1)12 model can better predict the short-term incidence trend of tuberculosis in Heze city,but it should be modified according to the changes of monitoring data to improve the prediction accuracy.

关 键 词:肺结核 ARIMA模型 预测 菏泽 

分 类 号:R195.1[医药卫生—卫生统计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象