检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾丰 王智 Jia Feng;Wang Zhi(Jilin Machinery Special Industry Co.,Ltd.,Jilin,China;Harbin Nuoxin Gongda Measurement and Control Technology Co.,Ltd.,Harbin,China)
机构地区:[1]吉林江机特种工业有限公司,吉林吉林 [2]哈尔滨诺信工大测控技术有限公司,黑龙江哈尔滨
出 处:《科学技术创新》2024年第12期66-69,共4页Scientific and Technological Innovation
摘 要:为解决风电出力因其波动性无法准确预测的问题,提出了一种基于改进BP神经网络和Bootstrap方法的短期风电出力区间预测方法。拟合历史数值天气预报(NWP)及实际观测值,修正待预测时刻NWP数据,并根据灰色关联系数法筛选气象相似时刻。采用粒子群算法优化BP神经网络参数,引入Bootstrap法增加数据多样性,建立多个确定性预测模型。运用百分位数估计法得到了给定置信水平下各时刻的功率波动区间。以国内某风电场为例,提前24 h预测风功率,结果表明,所得区间各项评估指标均满足实际工程需要。In order to solve the problem that wind power output cannot be accurately predicted due to its fluctuation,a short-term wind power output interval prediction method based on improved BP neural network and Bootstrap method was proposed.The historical numerical weather forecast(NWP)and the actual observation values were fitted,and the NWP data of the predicted time were corrected,and the similar meteorological time was screened according to the grey correlation coefficient method.The parameters of BP neural network were optimized by particle swarm optimization algorithm,and the Bootstrap method was introduced to increase the data diversity,and several deterministic prediction models were established.The percentile estimation method is used to obtain the power fluctuation interval at a given confidence level.Taking a domestic wind farm as an example,the wind power is predicted 24h in advance,and the results show that all the evaluation indexes in the obtained interval meet the practical engineering needs.
关 键 词:风速修正 相似日 BOOTSTRAP法 BP神经网络 区间预测
分 类 号:TM74[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49