检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:温琼阳 朱学军[1] 李毅 余坼操 Wen Qiongyang;Zhu Xuejun;Li Yi;Yu Checao(School of Mechanical Engineering,Ningxia University,Yinchuan 750021,China)
出 处:《计算机应用研究》2024年第6期1649-1655,共7页Application Research of Computers
基 金:国家自然科学基金资助项目(51765056)。
摘 要:针对工业机器人能耗轨迹优化问题,提出了一种基于金字塔层拓扑结构的粒子群算法。该算法引入了金字塔层式的拓扑结构,将粒子进行排序、分层,从而改进算法的竞争策略,增加了种群多样性;引入了新的合作策略以更新粒子的速度和位置;引入胜利百分比来自适应地调整粒子群算法的权重系数,提高了粒子的搜索效率。为了验证该算法的有效性,在测试函数集上进行了测试,并与其他八种变体粒子群算法进行比较,结果表明所提出的算法性能具有显著优势。最后将该算法应用到工业机器人轨迹规划中,仿真实验表明该算法能有效求解机器人的能耗最优轨迹,机器人的能耗明显减低,且满足工业机器人的运动学及动力学约束。This paper proposed a particle swarm algorithm based on pyramid layer topology to optimize energy consumption trajectories of industrial robots.The algorithm introduced a pyramid layer topology to sort and stratify the particles thus improving the competitive strategy of the algorithm and increasing the population diversity.The algorithm introduced a new cooperation strategy to update the speed and position of the particles.It introduced a victory percentage to adaptively adjust the weight coefficients of the particle swarm algorithm and improved the search efficiency of the particles.In order to verify the effectiveness of the algorithm,this paper tested it on the set of test functions and compared it with other eight variants of particle swarm algorithms.The results show that the performance of the proposed algorithm has significant advantages.Finally,it applied the algorithm to industrial robot trajectory planning.Simulation experiments show that the algorithm can effectively solve the optimal trajectory of the robot’s energy consumption,and the energy consumption of the robot is significantly reduced,which meets the kinematics and dynamics constraints of industrial robots.
关 键 词:机械臂 最小能耗 轨迹规划 拓扑结构 改进粒子群算法
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.130