基于双层图注意力网络的邻域信息聚合实体对齐方法  被引量:2

Neighborhood information aggregation entity alignment method based ondouble layer graph attention network

在线阅读下载全文

作  者:王键霖 张浩 张永爽 马超伟 齐珂 张小艾 Wang Jianlin;Zhang Hao;Zhang Yongshuang;Ma Chaowei;Qi Ke;Zhang Xiao’ai(College of Information&Management Sciences(College of Software),Henan Agricultural University,Zhengzhou 450046,China)

机构地区:[1]河南农业大学信息与管理科学学院(软件学院),郑州450046

出  处:《计算机应用研究》2024年第6期1686-1692,共7页Application Research of Computers

基  金:河南省重大科技专项(171100110600-01);河南省重点研发与推广专项(科技攻关)(222102110234);河南农业大学本科教育教学改革研究与实践项目(2023XJGLX045)。

摘  要:针对知识图谱中存在部分属性信息对实体对齐任务影响程度不一致以及实体的邻域信息重要程度不一致的问题,提出了一种结合双层图注意力网络的邻域信息聚合实体对齐(two-layer graph attention network entity alignment,TGAEA)方法。该方法采用双层图神经网络,首先利用第一层网络对实体属性进行注意力系数计算,降低无用属性对实体对齐的影响;随后,结合第二层网络对实体名称、关系和结构等信息进行特征加权,以区分实体邻域信息的重要性;最后,借助自举方法扩充种子实体对,并结合邻域信息相似度矩阵进行实体距离度量。实验表明,在DWY100K数据集上,TGAEA模型相较于当前基线模型,hit@1、hit@10和MRR指标分别提升了4.18%、4.81%和5%,证明了双层图注意力网络在邻域信息聚合实体对齐方面的显著效果。This paper proposed the TGAEA algorithm,which combined neighborhood information aggregation with two layers of graph attention networks to tackle challenges in entity alignment tasks within knowledge graphs.Initially,the method utilized the first-layer graph neural network to calculate attention coefficients for entity attribute embedding vectors,aiming to mitigate the impact of irrelevant attributes on entity alignment outcomes.Based on the attribute embedding,the second-layer graph neural network was employed to weight the embedding vectors of entity names,relationships,and structural information,thereby distinguishing the importance of various information within the entity’s neighborhood.Additionally,it utilized the bootstrap method to iteratively expand the seed entity pair,and completed the entity distance measurement by combining the neighborhood information similarity matrix.The experimental results show that the TGAEA model is significantly superior to the current advanced baseline models in the DWY100K dataset,compared to the best method,hit@1,hit@10 and MRR indicators increased by 4.18%,4.81%,and 5%.These findings emphasize the substantial impact of the two-layer graph attention network on aggregating neighborhood information for entity alignment.

关 键 词:知识图谱 实体对齐 图注意力网络 属性信息 邻域信息聚合 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象