检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙小军 盛宝怀 SUN Xiaojun;SHENG Baohuai(Department of Economic Statistics,School of International Business,Zhejiang Yuexiu University,Shaoxing,Zhejiang,312000,P.R.China;Department of Applied Statistics,Shaoxing University,Shaoxing,Zhejiang,312000,P.R.China)
机构地区:[1]浙江越秀外国语学院国际商学院经济统计系,绍兴浙江312000 [2]绍兴文理学院应用统计系,绍兴浙江312000
出 处:《数学进展》2024年第3期633-652,共20页Advances in Mathematics(China)
基 金:Supported partially by NSFC(No.61877039);the NSFC/RGC Joint Research Scheme(Nos.12061160462,N_CityU102/20)。
摘 要:最大相关熵回归在信号处理领域有广泛应用,其收敛性分析是机器学习领域中的热门研究课题.本文给出一种新的误差分析框架,将非凸优化问题转化为局部凸优化问题,然后应用凸分析方法给出最大相关熵回归(MCCR)收敛性的理论分析;将最优化回归函数表示成一种积分方程的解,用K-泛函和再生核Hilbert空间最佳逼近表示泛化误差,给出学习速度的一种上界估计.The maximum correntropy criterion induced regression(MCCR)has been used frequently in the field of signal processing.The consistency property analysis for MCCR has become an increasing attention topic in learning theory.We provide a new framework for analyzing learning error.We transform the non-convex kernel regularized problem into a local convex optimization,and then give theoretical analysis to the convergence of the kernel regularized MCCR.We express the optimal regression function as the solution of an integral equation,and bound the generalization error of the kernel regularized MCCR with a K-functional and the best reproducing kernel Hilbert space approximation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49