铰接农用车路径跟踪控制算法研究  

Study on Path Tracking Control Algorithm for Articulated Agricultural Vehicles

在线阅读下载全文

作  者:程家琪 魏涛 陈轩伟 高云龙 祝青园 邵桂芳 CHENG Jiaqi;WEI Tao;CHEN Xuanwei;GAO Yunlong;ZHU Qingyuan;SHAO Guifang(Pen-Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361102,China;State Key Laboratory of Intelligent Agricultural Power Equipment,Luoyang 471039,Henan,China)

机构地区:[1]厦门大学萨本栋微米纳米科学技术研究院,福建厦门361102 [2]智能农业动力装备全国重点实验室,河南洛阳471039

出  处:《拖拉机与农用运输车》2024年第3期49-52,共4页Tractor & Farm Transporter

基  金:智能农业动力装备全国重点实验室开放课题(SKLIAPE2023009)。

摘  要:针对铰接农用车在变附着系数路面条件下的路径跟踪精度难以保证的问题,提出了引入侧滑补偿的非线性模型预测控制(Nonlinear Model Predictive Control,NMPC)算法。首先,构建了考虑侧滑补偿的铰接农用车二自由度运动学模型,并基于该模型在Simulink中构建了NMPC控制器,最后以Adams环境中的虚拟铰接农用车为被控对象,以农业典型的地头转弯路径为参考路径,开展了变附着系数路面条件下的试验验证。结果表明,该算法的跟踪误差最大约为0.03 m,能够实现铰接农用车在变附着系数路面下的高精度路径跟踪。Addressing the challenge of maintaining path tracking precision for articulated agricultural vehicles under varying road adhesion conditions,a Nonlinear Model Predictive Control(NMPC)algorithm with introduced slip compensation was proposed.Initially,a two-degree-of-freedom kinematic model for articulated agricultural vehicles considering slip compensation was formulated.Subsequently,an NMPC controller based on this model was developed in Simulink.Finally,using a virtual articulated agricultural vehicle in the Adams environment as the controlled object and a typical agricultural headland turning path as the reference,experimental validation was conducted under variable adhesion road conditions.The results indicated that the algorithm achieved a maximum tracking error of approximately 0.03 meters,demonstrating its capability to achieve high-precision path tracking for articulated agricultural vehicles on surfaces with varying adhesion.

关 键 词:路径跟踪 铰接农用车 非线性模型预测控制 侧滑角 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] U463.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象