检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张加男 张伟鹏 ZHANG Jia-nan;ZHANG Wei-peng(School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China;Department of Mathematics,Jinan University,Guangzhou 510632,China)
机构地区:[1]东北师范大学数学与统计学院,吉林长春130024 [2]暨南大学数学系,广东广州510632
出 处:《东北师大学报(自然科学版)》2024年第2期17-26,共10页Journal of Northeast Normal University(Natural Science Edition)
基 金:国家自然科学基金资助项目(11971096);吉林省自然科学基金资助项目(YDZJ202101ZYTS154).
摘 要:研究了具有标准发生率和饱和治疗函数的SIS传染病模型的几类分支.该模型中使用的饱和治疗函数是一个连续且可微的函数,用以说明当治愈率较低以及感染人数较多时延迟治疗所产生的影响.讨论了系统无病平衡点和地方病平衡点的存在性,证明了该系统存在倒向分支,分析了系统平衡点的局部和全局稳定性,讨论了该系统Hopf分支和Bogdanov-Takens分支的存在情况,得出了相应结论并且给出了系统的分支相图,以及针对研究得出的数学结果提出了一些合理化建议.Several bifurcations of the SIS epidemic model with standard incidence and saturation treatment functions are studied.The saturation treatment function used in this model is a continuous and differentiable function that accounts for the effect of delayed treatment when the cure rate is low and the number of infections is large.The existence of disease-free and endemic equilibrium is discussed and it is shown that the system has a backward bifurcation.The local and global stability of the equilibrium of the system are analysed separately.The existence of Hopf and Bogdanov-Takens bifurcations is shown.The corresponding conclusions are drawn,the bifurcation phase diagram of the system is given,and some reasonable suggestions are made for the mathematical results obtained from the study.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.201.27