检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨榕彬 白洪涛 曹英晖 何丽莉 YANG Rongbin;BAI Hongtao;CAO Yinghui;HE Lili(College of Software,Jilin University,Changchun 130012,China)
机构地区:[1]吉林大学软件学院,长春130012
出 处:《吉林大学学报(信息科学版)》2024年第3期438-445,共8页Journal of Jilin University(Information Science Edition)
基 金:国家重点研发计划基金资助项目(2022YFF06069003)。
摘 要:针对传统密度峰值聚类在波段选择时缺乏信息论角度的相似性度量以及波段数目确定问题,提出基于光谱角-光谱信息散度的自适应密度峰值波段选择方法(SSDPC:Spectral angle mapping and Spectral information divergence Density Peaks Cluster)。该方法将光谱信息散度和光谱角用于高光谱图像密度峰值聚类进行波段选择,取代传统的欧氏距离构建波段相似矩阵。通过构建波段评分策略,有效自动选择出重要的光谱波段子集。在3组高光谱数据集上调用RX(Reed-Xiaoli)算法进行异常检测,在SSDPC的相似性度量方法下,异常检测精度较欧氏距离度量方法分别平均提高1.16%、1.18%和0.07%;在自适应的SSDPC波段选择方法下,异常检测精度相较原始RX算法分别提升6.49%、2.71%和0.05%。结果表明,该算法具有良好的鲁棒性,能提升高光谱图像异常检测的性能并降低其虚警率。In order to solve the problem that traditional density peak clustering method without considering similarity of bands in information theory and number of bands in band selection,an adaptive density peak band selection method based on spectral angle mapping and spectral information divergence(SSDPC:Spectral angle mapping and Spectral information divergence Density Peaks Cluster)is proposed.SSDPC combines spectral angle mapping and spectral information divergence for density peak clustering band selection in hyperspectral images,replacing the traditional Euclidean distance to construct a band similarity matrix.By constructing a band scoring strategy,an important subset of spectral bands can be selected automatically and effectively.Using RX(Reed-Xiaoli)algorithm for anomaly detection on three sets of hyper-spectral datasets,the accuracy of anomaly detection is 1.16%,1.18%and 0.07%higher than that of Euclidean distance measurement under the similarity measure of SSDPC.Under the adaptive SSDPC band selection method,the accuracy of anomaly detection is 6.49%,2.71%and 0.05%higher than that of the original RX algorithm,respectively.The experimental results show that the SSDPC is robust,can improve the performance of hyper-spectral image anomaly detection and reduce its false alarm rate.
关 键 词:密度峰值 波段选择 光谱角 光谱信息散度 聚类中心
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.144.10