检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王小敏[1,2] 贾钰林 张亚东 魏维伟[3] 何静 WANG Xiaomin;JIA Yulin;ZHANG Yadong;WEI Weiwei;HE Jing(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China;Sichuan Province Train Operation Control Technology Engineering Research Center,Chengdu 611756,China;Traffic Sensing Radar Research and Development Center,China Aerospace Science and Technology Corporation,Shanghai 201109,China)
机构地区:[1]西南交通大学信息科学与技术学院,成都611756 [2]四川省列车运行控制技术工程研究中心,成都611756 [3]中国航天科技集团有限公司交通感知雷达研发中心,上海201109
出 处:《同济大学学报(自然科学版)》2024年第6期935-942,共8页Journal of Tongji University:Natural Science
基 金:中国国家铁路集团有限公司科技研究开发计划(P2021G053,N2021T008,N2021G045);上海航天科技创新基金(SAST2020-126)。
摘 要:针对Kalman滤波在高速列车融合测速过程中因观测粗差和动力学模型误差而引起的融合精度下降问题,提出一种基于抗差自适应滤波的高速列车融合测速算法。首先,在Kalman滤波的基础上构建异常检测函数和误差判别统计量,用于检测和区分传感器异常观测导致的观测粗差和动力学模型误差;然后,针对观测粗差和动力学模型误差,分别采用三段式函数和指数函数构造抗差因子和自适应因子,通过2种因子合理调节观测信息和模型信息在状态估计中的权重,从而降低观测粗差和动力学模型误差对融合结果的影响;最后,通过2种运行场景以及算法对比,仿真验证抗差自适应滤波算法性能。仿真结果表明,与基于Kalman滤波的融合测速算法相比,所提出算法无论在观测粗差场景还是在动力学模型误差场景,均具有更高的精度和稳定性。A fusion speed measurement algorithm of high-speed trains based on robust adaptive filter was proposed to solve the problem that the fusion accuracy decreased due to the observation gross errors and the dynamic model errors in the fusion speed measurement using Kalman filter.Firstly,the anomaly detection function and error discrimination statistics were constructed on the basis of Kalman filter,which were used to detect and distinguish the observation gross errors and dynamic model errors caused by abnormal observations of sensors.Then,for observation gross errors and dynamic model errors,a three-segment function and an exponential function were used to construct robust factor and adaptive factor,respectively.The weights of observation information and model information in state estimation were reasonably adjusted by the two factors,so as to reduce the impact of observation gross errors and dynamic model errors on the fusion results.Finally,the performance of robust adaptive filter was verified by simulation with two operation scenes and comparison between algorithms.The simulation results show that compared with the fusion speed measurement algorithm based on Kalman filter,the proposed algorithm has higher accuracy and stability in both the observation gross errors scene and the dynamic model errors scene.
关 键 词:铁路运输 列车测速 抗差自适应滤波 高速列车 信息融合
分 类 号:U284.7[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.202.126