检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹旭 张舜 许彦峰[1] 王青春[1] CAO Xu;ZHANG Shun;XU Yanfeng;WANG Qingchun(Beijing Forestry University,Beijing 100083,China;Anhui Lupital Iot Co.,Ltd,Hefei 230031,China)
机构地区:[1]北京林业大学工学院,北京100083 [2]安徽路必达智能科技有限公司,安徽合肥230031
出 处:《轮胎工业》2024年第5期312-315,共4页Tire Industry
摘 要:研究基于粒子群优化(PSO)算法-BP神经网络的轮胎负荷测量方法。将采集的轮胎状态信息与提取到的加速度特征输入到BP神经网络,对轮胎负荷进行回归预测,使用PSO算法优化BP神经网络的权值与阈值,得到轮胎状态信息与轮胎负荷的关系。结果表明,采用PSO-BP神经网络预测轮胎负荷误差为1.8656%,PSO-BP神经网络预测精度较高,在转变工况条件下,预测误差为2.496%。The tire load measurement method based on particle swarm optimization(PSO)algorithm-BP neural network was studied.The collected tire condition information and extracted acceleration features were input into the BP neural network to regressively predict the tire load.The weight and threshold of BP neural network were optimized by PSO algorithm,and the relationship between tire state information and tire load was obtained.The results showed that the prediction error for tire load using the PSO-BP neural network was 1.8656%and the prediction accuracy of PSO-BP neural network was higher.Under changing working conditions,the prediction error was 2.496%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49