船舶低速机故障预测与健康管理技术研究及应用  

Research and application of fault prediction and health management technology for ship low-speed engines

在线阅读下载全文

作  者:李业鹏 祖象欢 杨传雷[1] 孙蕾 张光伟 LI Yepeng;ZU Xianghuan;YANG Chuanlei;SUN Lei;ZHANG Guangwei(College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China;CSSC Engine Co.,Ltd.,Qingdao 266520,China)

机构地区:[1]哈尔滨工程大学动力与能源工程学院,黑龙江哈尔滨150001 [2]中船发动机有限公司,山东青岛266520

出  处:《应用科技》2024年第3期44-49,共6页Applied Science and Technology

基  金:高技术船舶科研项目.

摘  要:为了提高船舶低速机运行的稳定性和可靠性以及船舶航行安全性,构建了船舶低速机故障预测与健康管理系统,利用GT-POWER软件搭建了低速机仿真模型数据库,提出了基于性能仿真、油液分析以及振动分析相融合的故障诊断方法。以此为基础,成功研制出船舶低速机故障预测与健康管理系统并完成台架试验,自主设计和开发的系统样机及客户端已成功应用于某6.2×10^(4)t多功能纸浆船,安全稳定运行超过6000 h,完成了相关实船验证,实现了对船舶主机的全生命周期管理,该系统为智能船舶的安全运维开辟了新的方向,对智能船舶的建设具有积极的推动和引导意义。In order to improve the stability and reliability of ship low-speed engines and the safety of ship navigation,the fault prediction and health management system architecture of ship low-speed engines were built in this study.Using the software GT-POWER,the simulation model database of low-speed engines was built,and a fault diagnosis method was proposed based on the integration of performance simulation,oil analysis and vibration analysis.On this basis,the fault prediction and health management system of marine low-speed machine was successfully developed and the bench test was completed.The self-designed and developed system prototype and client had been successfully applied to a 62,000 tons multifunctional pulp ship,which had operated safely and stably for more than 6000 hours,completed relevant real ship verification,and realized the whole life cycle management of the ship’s main engine.This system opens up a new direction for the safe operation and maintenance of intelligent ships,having positive promoting and guiding significance to the construction of intelligent ships.

关 键 词:低速机 故障预测与健康管理 故障诊断 GT-POWER 性能仿真 振动分析 油液分析 智能船舶 

分 类 号:TK427[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象