检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁寒玉 刘成瑞[1] 刘文静[1] 徐赫屿[1] 李文博[1] LIANG Hanyu;LIU Chengrui;LIU Wenjing;XU Heyu;LI Wenbo(Science and Technology on Space Intelligent Control Laboratory,Beijing Institute of Control Engineering,Beijing 100190)
机构地区:[1]北京控制工程研究所空间智能控制技术重点实验室,北京100190
出 处:《飞控与探测》2024年第1期62-71,共10页Flight Control & Detection
基 金:国家自然科学基金优秀青年学者项目(62022013)。
摘 要:卫星组网是未来航天的发展大趋势,要保证众星在轨安全可靠稳定运行,要求单星具备高精度的在轨自主故障诊断能力。针对航天器控制系统故障闭环传播和数据维数高的特点,结合某航天器的地面测试数据,首先对高维耦合序列数据进行处理,实现序列到灰度图像的映射,然后采用卷积神经网络完成高精度同一故障部件的故障诊断。通过将所提方法与K邻近算法、基于主成分分析的K邻近算法等非图像化机器学习算法进行对比验证,说明了所提方法的有效性。Satellite networking is a major trend in the future development of spaceflight,and to ensure the safe,reliable and stable operation of many satellites in orbit,a single satellite is required to have high-precision in-orbit autonomous fault diagnosis capability.In this paper,for the characteristics of closed-loop fault propagation and high data dimensionality of the spacecraft control system,combined with the ground test data of a spacecraft,we first process the high-dimensional coupled sequence data to realize the mapping from sequence to grayscale image,and then use the convolution neural network(CNN)to complete the fault diagnosis of the same faulty component with high accuracy.The effectiveness of the proposed method is illustrated by comparing and validating it with non-image-based machine learning algorithms such as the K-neighborhood algorithm and the K-neighborhood algorithm based on principal component analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90