检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱娟 朱国吕 岳晓峰[1] ZHU Juan;ZHU Guolyu;YUE Xiaofeng(School of Mechanical and Electrical Engineering,Changchun University of Technology,Changchun 130012,China)
出 处:《重庆理工大学学报(自然科学)》2024年第5期86-94,共9页Journal of Chongqing University of Technology:Natural Science
基 金:吉林省科学技术厅基金项目(20220203091SF)。
摘 要:UFLD(ultra fast structure aware deep lane detection)是一种轻量化车道线检测模型,为提升模型的检测精度,对模型进行改进。引入CAM(channel attention mechanism)使模型能更关注携带重要车道线信息的特征通道和像素;为了感知车道线的细节信息,引入ASPP(atrous spatial pyramid pooling)扩大卷积过程的感受野,提高模型分割精度;搭建引入CAM和ASPP后的改进模型,并在改进的模型上进行实验。实验结果表明:在TuSimple数据集上以ResNet18为主干网络的模型检测精度由95.81%提升至95.98%,以ResNet34为主干网络的模型检测精度由95.84%提升至96.12%;在CULane数据集上,无论是以ResNet18还是以ResNet34为主干网络模型,其平均精度均有不同程度的提高。The UFLD(Ultra Fast Structure Aware Deep Lane Detection)is a lightweight lane line detection model.To improve the detection accuracy,this paper improves the model.First,the Channel Attention Mechanism(CAM)is introduced to make the model more attentive to the feature channels and pixels that carry important information.Secondly,to perceive the detailed information of line lanes,the Atrous Spatial Pyramid Pooling(ASPP)is introduced to expand the receptive field of convolution operation and improve the segmentation accuracy of model.Finally,an improved model is built after introducing CAM and ASPP,and experiments are conducted.Our experimental results show on the TuSimple dataset,the detection accuracy increases from 95.81%to 95.98%with ResNet18 as the backbone network,and rises from 95.84%to 96.12%with ResNet34 as the backbone.On the CULane dataset,whether the model uses ResNet18 or ResNet34 as the backbone network,its average accuracy improves with varied degrees.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30