检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:文井辉 伍荣森 李帅永 韩明秀 WEN Jinghui;WU Rongsen;LI Shuaiyong;HAN Mingxiu(Key Laboratory of Industrial Internet of Things and Networked Control,Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065
出 处:《计算机集成制造系统》2024年第5期1877-1888,共12页Computer Integrated Manufacturing Systems
基 金:国家重点研发计划资助项目(2018YFB1700200)。
摘 要:针对传统轴承寿命预测方法过度依赖先验知识、缺乏自适应性及退化特征难以提取导致的预测误差大的问题,提出一种自适应特征提取的基于深度残差收缩网络(DRSN)和双向长短时记忆网络(BiLSTM)的轴承剩余寿命预测方法。首先,无需任何先验知识利用DRSN对轴承原始信号进行自动特征学习,提取退化特征并构建健康指标;然后,采用麻雀搜索算法优化BiLSTM隐藏层神经元个数和学习率,基于优化的BiLSTM网络建立轴承剩余寿命预测模型;最后,进行对比实验验证:分别对比DRSN、残差网络、均值特征3种方法提取的健康指标的性能和不同的轴承剩余寿命寿命预测模型进行对比实验。实验结果表明DRSN网络提取的健康指标性能最优,同时基于优化后的BiLSTM轴承剩余寿命预测模型的误差最小,基于优化后BiLSTM、BiLSTM和长短时记忆网络(LSTM)的3种轴承剩余寿命预测模型的均方根误差分别为1.41%、2.71%、5.64%,验证了方法的有效性。In view of the problems of traditional bearing life prediction methods such as excessive dependence on prior knowledge,lack of adaptability and large prediction error caused by difficult extraction of degradation characteristics,a bearing residual life prediction method based on Deep Residual Shrinkage Network(DRSN)and Bidirectional Long-Short-Term Memory network(BiLSTM)with adaptive feature extraction was proposed.Without any prior knowledge,DRSN was used to automatically learn the characteristics of the original signal of the bearing,extract the degradation characteristics and construct the health index.Then,the number of hidden layer neurons and learning rate of BiLSTM were optimized by sparrow search algorithm,and the remaining life prediction model of bearing was established based on the optimized BiLSTM.The performance of health index extracted by DRSN,residual network and mean feature and different bearing residual life prediction models were compared.The experimental results showed that the health index extracted by DRSN network had the best performance,and the error of the optimized BiLSTM bearing residual life prediction model was the smallest.The root means square errors of the three bearing residual life prediction models based on the optimized BiLSTM,BiLSTM and Long-Short-Term Memory network(LSTM)were 1.41%,2.71%and 5.64%respectively,which verified the effectiveness of the proposed method.
关 键 词:深度残差收缩网络 双向长短时记忆网络 剩余寿命预测 麻雀搜索算法
分 类 号:TN911.7[电子电信—通信与信息系统] TH86[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63