决策树赋能的血液分析结果智能审核规则的建立与验证  

Decision tree-enabled establishment and validation of intelligent verification rules for blood analysis results

在线阅读下载全文

作  者:曲林琳[1] 赵旭[2] 何亮[3] 谭业辉[4] 李映潼[1] 陈显秋[1] 杨宗兴 才玥[1] 安倍莹[1] 李丹[1] 梁津 何冰 孙秋文 张一博 吕鑫 熊士博 续薇[1] Qu Linlin;Zhao Xu;He Liang;Tan Yehui;Li Yingtong;Chen Xianqiu;Yang Zongxing;Cai Yue;An Beiying;Li Dan;Liang Jin;He Bing;Sun Qiuwen;Zhang Yibo;Lyu Xin;Xiong Shibo;Xu Wei(Department of Laboratory Medicine,Changchun 130021,China;Department of Hepatobiliary and Pancreatic Medicine,Changchun 130021,China;Gastric and Intestinal Department,General Surgery Center,Changchun 130021,China;Department of Hematology,the First Hospital of Jilin University,Changchun 130021,China)

机构地区:[1]吉林大学第一医院检验科,长春130021 [2]吉林大学第一医院肝胆胰内科,长春130021 [3]吉林大学第一医院普通外科中心胃结直肠外科,长春130021 [4]吉林大学第一医院血液科,长春130021

出  处:《中华检验医学杂志》2024年第5期536-542,共7页Chinese Journal of Laboratory Medicine

摘  要:目的:建立血液分析检验结果人工智能(AI)审核规则。方法:纳入2019年8月1日至31日吉林大学第一医院住院患者血液分析数据18474份,作为AI审核规则训练组,采集其对应的患者年龄、镜检结果、临床诊断信息,以血液分析报告参数、研究参数、报警信息等92个实验室参数作为AI审核规则的候选条件;依据镜检的人工审核作为审核标准,标注是否通过或拦截;采用决策树算法,通过高强度、多轮次及五折交叉验证,初步建立AI审核规则,通过设置重要病例必中,以优化AI审核规则。采用卡方检验比较AI审核规则与自动审核规则的假阴性率、精确率、召回率、F1分数、通过率等指标,评价AI审核规则性能。收集2023年11月1日至31日吉林大学第一医院检验科12475份住院患者血液分析数据作为验证组,将AI审核规则模拟用于结果审核,分析AI审核规则的性能指标,验证AI审核规则的性能。结果:AI审核规则由15项规则、17条参数构成,能够分辨计数和形态异常。与自动审核规则相比,AI审核规则的训练组真阳性率、假阳性率、真阴性率、假阴性率、通过率、正确率、精确率、召回率、F1分数分别为22.7%、1.6%、74.5%、1.3%、75.7%、97.2%、93.5%、94.7%、94.1,均优于自动审核规则,差异具有统计学意义(P<0.001),且无重要病例漏检。验证组真阳性率、假阳性率、真阴性率、假阴性率、通过率、正确率、精确率、召回率、F1分数分别为19.2%、8.2%、70.1%、2.5%、72.6%、89.2%、70.0%、88.3%、78.1,与自动审核规则相比,假阴性率较低、假阳性率和召回率稍高,差异具有统计学意义(P<0.001)。结论:利用机器学习的决策树算法建立并验证的血常规AI审核规则,能较稳定地识别、拦截与提示异常结果,与自动审核相比在血液分析检验结果报告中更加简便、高效、准确。Objective To establish a set of artificial intelligence(AI)verification rules for blood routine analysis.Methods Blood routine analysis data of 18474 hospitalized patients from the First Hospital of Jilin University during August 1st to 31st,2019,were collected as training group for establishment of the AI verification rules,and the corresponding patient age,microscopic examination results,and clinical diagnosis information were collected.92 laboratory parameters,including blood analysis report parameters,research parameters and alarm information,were used as candidate conditions for AI audit rules;manual verification combining microscopy was considered as standard,marked whether it was passed or blocked.Using decision tree algorithm,AI audit rules are initially established through high-intensity,multi-round and five-fold cross-validation and AI verification rules were optimized by setting important mandatory cases.The performance of AI verification rules was evaluated by comparing the false negative rate,precision rate,recall rate,F1 score,and pass rate with that of the current autoverification rules using Chi-square test.Another cohort of blood routine analysis data of 12475 hospitalized patients in the First Hospital of Jilin University during November 1sr to 31st,2023,were collected as validation group for validation of AI verification rules,which underwent simulated verification via the preliminary AI rules,thus performance of AI rules were analyzed by the above indicators.Results AI verification rules consist of 15 rules and 17 parameters and do distinguish numeric and morphological abnormalities.Compared with auto-verification rules,the true positive rate,the false positive rate,the true negative rate,the false negative rate,the pass rate,the accuracy,the precision rate,the recall rate and F1 score of AI rules in training group were 22.7%,1.6%,74.5%,1.3%,75.7%,97.2%,93.5%,94.7%,94.1,respectively.All of them were better than auto-verification rules,and the difference was statistically significant(P<0.001),a

关 键 词:血液学试验 血液分析 人工智能 审核规则 决策树 

分 类 号:R446.11[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象