检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙媛[1] SUN Yuan(School of Big Data and Artificial Intelligence,Dalian University of Finance and Economics,Dalian Liaoning 116622,China)
机构地区:[1]大连财经学院大数据与人工智能学院,辽宁大连116622
出 处:《佳木斯大学学报(自然科学版)》2024年第4期52-55,共4页Journal of Jiamusi University:Natural Science Edition
基 金:辽宁省教育厅2022年度高校基本科研项目(LJKMR20221958)。
摘 要:为了提高电子商务信用风险预警效果,设计了一种大数据背景下的电子商务信用风险预警方法。首先设计电子商务信用风险预警指标,并采集大量的电子商务信用风险数据,然后分别采用最小二乘支持向量机和神经网络对电子商务信用风险预警进行建模,并对它们预警结果进行组合,最后与传统方法进行电子商务信用风险预警对比分析,分析结果表明设计的方法可以准确找到电子商务信用风险预警变化特点,电子商务信用风险预警正确率超过94%,远远高于传统方法的电子商务信用风险预警结果,大幅度降低了电子商务信用风险的误警率,具有十分明显的优越性。In order to improve the effect of e-commerce credit risk early warning,An e-commerce credit risk early warning method under the background of big data is designed.Firstly,the e-commerce credit risk early warning index is designed,and a large number of e-commerce credit risk data are collected.Then,the e-commerce credit risk early warning is modeled by support vector machine and neural network respectively,and their early warning results are combined.Finally,compared with the traditional methods,this method can accurately find the change characteristics of e-commerce credit risk early warning.The accuracy of e-commerce credit risk early warning is more than 94%,which is much higher than the e-commerce credit risk early warning results of the traditional methods,and greatly reduces the false alarm rate of e-commerce credit risk,It has obvious advantages.
关 键 词:大数据背景 电子商务 信用风险 预警正确率 仿真测试
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.43.181