检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敏红[1] 李志铭[1] 陈淮[1] 余林[1] 梁杰锋 列潮炜 LI Minhong;LI Zhiming;CHEN Huai;YU Lin;LIANG Jiefeng;LIE Chaowei(Radiology Department,the Second Affiliated Hospital of Guangzhou Medical University,Guangdong Guangzhou 510260,China)
机构地区:[1]广州医科大学附属第二医院放射科,广东广州510260
出 处:《现代肿瘤医学》2024年第11期2055-2059,共5页Journal of Modern Oncology
基 金:国家自然科学资金面上项目(编号:82172024)。
摘 要:目的:构建基于深度学习算法的胰腺癌计算机断层扫描(CT)自动分期系统,并探讨其应用价值。方法:回顾性分析我院2014年01月至2021年12月收治的286例胰腺癌患者的临床资料,均经CT检查且明确TNM分期,利用CT检查信息基于深度学习算法的胰腺癌CT自动分期系统。另选取2022年01月至2023年02月胰腺癌患者92例,均经CT检查,并利用上述系统进行TNM分期,分析该系统的准确性。结果:基于深度学习算法的胰腺癌CT自动分期系统共包括7个模块,可以实现胰腺癌TNM自动分期;92例患者中共有Ⅰ期12例、Ⅱ期31例、Ⅲ期36例、Ⅳ期13例,经基于深度学习算法的胰腺癌CT自动分期系统诊断共有Ⅰ期10例、Ⅱ期31例、Ⅲ期38例、Ⅳ期13例;该系统诊断胰腺癌TNM分期的灵敏度、特异度和准确度高,且与金标准高度一致(Kappa值=0.912,P<0.001)。结论:本研究构建了基于深度学习算法的胰腺癌CT自动分期系统,诊断价值高。Objective:To construct an automatic staging system of pancreatic cancer computed tomography(CT)based on deep learning algorithm and explore its application value.Methods:Retrospective analysis was made on the clinical data of 286 patients with pancreatic cancer admitted to the hospital from January 2014 to December 2021.All of them had undergone CT examination and identified TNM staging.The automatic CT staging system for pancreatic cancer was based on deep learning algorithm using CT examination information.In addition,92 patients with pancreatic cancer from January 2022 to February 2023 were selected,all of whom were examined by CT,and the above system was used for TNM staging to analyze the accuracy of the system.Results:The automatic CT staging system for pancreatic cancer based on deep learning algorithm included 7 modules,which could realize automatic TNM staging of pancreatic cancer.There were 12 cases of stageⅠ,31 cases of stageⅡ,36 cases of stageⅢand 13 cases of stageⅣin 92 patients,and 10 cases of stageⅠ,31 cases of stageⅡ,38 cases of stageⅢand 13 cases of stageⅣwere diagnosed by the automatic CT staging system based on deep learning algorithm.The system had high sensitivity,specificity and accuracy in diagnosing TNM staging of pancreatic cancer,and which was highly consistent with the gold standard(Kappa value=0.912,P<0.001).Conclusion:In this study,an automatic CT staging system for pancreatic cancer based on deep learning algorithm is constructed,which has high diagnostic value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.18.100