检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚星宇[1] 来源 李娜[1] 雷璇 GONG Xing-yu;LAI Yuan;LI Na;LEI Xuan(College of Computer Science and Technology,Xi’an University of Science and Technology,Xi’an 710600,China)
机构地区:[1]西安科技大学计算机科学与技术学院,陕西西安710600
出 处:《计算机工程与设计》2024年第6期1640-1646,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(62002285)。
摘 要:针对入侵检测模型提取特征能力不足,且流量数据中含冗余噪声的问题,提出一种基于多尺度融合和时空特征的ML-PFN入侵检测模型。采用多尺度特征融合技术分别提取数据中浅层特征信息和深层特征信息,使模型学习的特征更加丰富;采用软阈值函数和注意力机制自动选择合适的阈值,减少噪声及不相关信息对模型的干扰;融合时空特征构成多尺度空间特征提取长短时记忆-并行特征网络(MSFE LSTM-parallel feature network, ML-PFN)模型,并应用于网络入侵检测。通过3个公开数据集进行性能评估,实验结果表明,ML-PFN模型对比其它5种分类模型各项指标效果最好,在训练时长适中的同时准确率达到96.45%。Aiming at the problems that the intrusion detection model lacks the ability to extract features and the traffic data contains redundant noise,a ML-PFN intrusion detection model based on multiscale fusion and spatial-temporal features was proposed.The multiscale feature fusion technology was used to extract the shallow feature information and the deep feature information in the data respectively,so as to enrich the features of model learning.Soft threshold function and attention mechanism were used to automatically select appropriate threshold to reduce the interference of noise and irrelevant information on the model.The multiscale spatial feature extraction parallel feature network(ML-PFN)model based on the fusion of spatial-temporal features was constructed and applied to network intrusion detection.Through performance evaluation on three open data sets,the experimental results show that ML-PFN model has the best performance compared with other five classification models,and the accuracy rate reaches 96.45%when the training time is moderate.
关 键 词:入侵检测 冗余噪声 多尺度融合 时空特征 软阈值 注意力机制 长短时记忆
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229