检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李健[1] 刘阳[2] 闫霞 王颜 LI Jian;LIU Yang;YAN Xia;WANG Yan(Breast Disease Diagnosis Treatment Center,Affiliated Taian Central Hospital of Qingdao University,Taian 271000,China;Department of Hepatobiliary and Pancre-atic Surgery,Affiliated Taian Central Hospital of Qingdao University,Taian 271000,China;Department of Applied Mathematics,College of Information Science and Engineering,Shandong Agricultural University,Taian 271000,China)
机构地区:[1]青岛大学附属泰安市中心医院乳腺疾病诊疗中心,山东泰安271000 [2]青岛大学附属泰安市中心医院肝胆胰腺外科,山东泰安271000 [3]山东农业大学信息科学与工程学院应用数学系,山东泰安271000
出 处:《中国现代普通外科进展》2024年第5期359-363,共5页Chinese Journal of Current Advances in General Surgery
摘 要:目的:开发一种基于腺苷到肌苷的脱氨基(A-to-I RNA编辑,ATIRE)的预后模型用于改善乳腺癌的个体化治疗。方法:首先使用单变量Cox回归分析来获得训练集中与总生存(OS)相关的ATIRE位点,然后进行最小绝对收缩和选择算子(LASSO)回归算法来确定最佳预后ATIRE位点,进行多因素Cox比例风险回归分析建立风险模型,纳入ATIRE风险评分和临床病理学特征变量构建预后列线图,绘制校准曲线并计算一致性指数以评价模型的预测概率与实际的一致性,通过决策曲线分析(DCA)评价该模型的临床收益价值。结果:确定18个预后位点用来构建预后模型,并生成ATIRE风险评分。高风险评分患者的中位生存时间显著缩短,列线图在预测乳腺癌的OS概率方面表现良好。校准曲线表现出优异的一致性,决策曲线显示其具有更高的净收益。结论:分析ATIRE事件在预测乳腺癌生存中的作用,基于AITRE的预后模型可以帮助临床医师更好进行临床决策。Objective:To develop a prognostic model based on adenosine-to-inosine deamination(A-to-I RNA editing,ATIRE)to improve individualized treatment of breast cancer.Methods:Univariate Cox regression analysis was first used to obtain ATIRE loci associated with overall survival(OS)in the training set,followed by a least absolute shrinkage and selection operator(LASSO)regression algorithm to determine the best prognostic AIRE loci,a multivariate Cox proportional risk regression analysis to build a risk model,incorporating AIRE risk scores and clinico-pathological characteristics variables to construct A prognostic nomogram was constructed,calibration curves were plotted and consistency indices were calculated to evaluate the agreement between the predicted probability of the model and the actual,and the clinical benefit value of the model was evaluated by decision curve analysis(DCA).Results:Eighteen prognostic loci were finally identified for constructing prognostic models and generating ATIRE risk scores.Patients with high risk scores had significantly shorter median survival times,and nomogram performed well in predicting the probability of OS in breast cancer.The calibration curves showed excellent agree-ment and the decision curves showed a higher net benefit.Conclusion:To analyze the role of ATIRE events in predicting breast cancer survival,AITRE-based modal prognostic phenotype can help clinicians to make better clinical decisions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30