检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马彤宇[1] MA Tong-yu(Geological Laboratory of the 313 Geological Team of Anhui Provincial Geological and Mineral Exploration Bureau,Lu'an 237010,China)
机构地区:[1]安徽省地质矿产勘查局313地质队地质实验室,安徽六安237010
出 处:《世界有色金属》2024年第7期217-219,共3页World Nonferrous Metals
摘 要:矿石小体重在资源储量估算过程中是一个重要参数,它的准确与否,直接影响矿床的经济评价和矿山储量估算结果。为减小矿石小体重的误差,在矿业技术及数字化时代的技术革新背景下,本文使用Python语言构建矿石中硅铝铁的品位与矿石小体重之间的BP神经网络预测模型,实现了对该矿区矿石小体重的预测,当均方误差损失值为0.0022时,此模型预测结果有着96.55%的准确率。通过对测量值和预测值的对比,筛选结果偏差大的样品进行重新测量,校验样品的小体重,以确保每个样品小体重值的可靠性和准确性。The small weight of ore is an important parameter in the process of resource reserve estimation,and its accuracy directly affects the economic evaluation of mineral deposits and the results of mine reserve estimation.In order to reduce the error of small weight of ore,under the background of technological innovation in mining technology and the digital era,this paper uses Python language to construct a BP neural network prediction model between the grade of silicon aluminum iron in ore and the small weight of ore,and realizes the prediction of small weight of ore in the mining area.When the mean square error loss value is 0.0022,the prediction result of this model has an accuracy of 96.55%.By comparing the measured values and predicted values,select samples with large deviations for re measurement,verify the small body weight of the samples,and ensure the reliability and accuracy of the small body weight values of each sample.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63