基于SABO优化VMD与K-means++的机器人磨削颤振识别  被引量:1

Chatter Recognition of Robotic Grinding Process Based on SABO Optimized VMD and K-means++

在线阅读下载全文

作  者:吴俊烨 张浩 顾波 胡孟成 WU Junye;ZHANG Hao;GU Bo;HU Mengcheng(School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China;Jiangsu Province Key Laboratory of Industrial Equipment Manufacturing and Digital Control Technology,Nanjing 211899,China)

机构地区:[1]南京工业大学机械与动力工程学院,南京211816 [2]江苏省工业装备数字制造及控制技术重点实验室,南京211899

出  处:《组合机床与自动化加工技术》2024年第6期181-184,192,共5页Modular Machine Tool & Automatic Manufacturing Technique

基  金:江苏省科技成果转化专项资金资助项目(BA2022021)。

摘  要:机器人由于低刚度特性导致加工中极易产生颤振,针对颤振特征频率提取与颤振识别问题,提出基于减法平均优化算法(SABO)对变分模态分解(VMD)中关键参数进行优化,筛选颤振敏感IMF分量并重组;根据颤振信号的频谱特性构建基于功率谱熵差(ΔPSE)的颤振识别指标,采用K-means++算法对不同颤振类型进行辨识。实验结构表明,所提出的SABO-VMD-K-means++方法可以准确识别机器人磨削加工颤振类型,为机器人磨削颤振监测提供一定的指导。Due to low stiffness characteristics,the robot is susceptible to chatter vibration during machining.To address the issues of feature frequency extraction and recognition of chatter vibration,a subtraction-average-based optimizer(SABO)is proposed to optimize key parameters in VMD,allowing for the selection and recombination of chatter-sensitive IMF components.Furthermore,a vibration recognition index based on the power spectral entropy difference(ΔPSE)is constructed,taking into account the spectral characteristics of the vibration signal.The K-means++algorithm is employed to distinguish different types of chatter vibrations.Experimental results demonstrate SABO-VMD-K-means++method can accurately identify the types of chatter vibration in robot grinding processes,providing valuable guidance for chatter vibration monitoring in robot grinding operations.

关 键 词:机器人磨削颤振 减法平均优化算法 特征提取 颤振类型识别 

分 类 号:TH16[机械工程—机械制造及自动化] TG58[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象