检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张姗梅[1] 刘耀军[2] ZHANG Shanmei;LIU Yaojun(School of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China;School of Computer Science and Technology,Taiyuan Normal University,Jinzhong 030619,China)
机构地区:[1]太原师范学院数学与统计学院,山西晋中030619 [2]太原师范学院计算机科学与技术学院,山西晋中030619
出 处:《中央民族大学学报(自然科学版)》2024年第2期62-68,共7页Journal of Minzu University of China(Natural Sciences Edition)
摘 要:利用矩阵秩的定义证明矩阵秩的性质时,需要使用行列式的性质,证明过程较为复杂。线性方程组解的理论与矩阵秩的内在联系,使得用线性方程组解的理论证明矩阵秩的性质成为可能。应用线性方程组解的理论,可将矩阵秩的等式证明转化为线性方程组解空间相等的证明;将矩阵秩的不等式的证明转化为解空间包含的证明。从行列式性质法的证明转化为集合间关系的证明,不仅简化了矩阵秩的性质的证明,而且证明过程便于理解。When using the definition of the matrix rank to prove the property of the matrix rank,the property of the determinant needs to be applied,and the proof process is complex.The internal relationship between the theory of solution of system of linear equations and the rank of matrix implies that the property of the rank of matrix can be proved by the theory of solution of system of linear equations.Applying the theory of system of linear equations,the proof of equality for matrix rank is transformed into the proof of equality of solution spaces of system of linear equations,and the proof of inequality for matrix rank is transformed into the proof of inclusion in the solution space.The transformation from the proof of the determinant property method to the proof of the relationship between sets simplifies the proof of the property of the matrix rank and makes the proof more concise.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.238.74