检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:祝靖宇 张宏立[1] 匡敏驰 史恒 朱纪洪 乔直 周文卿 Zhu Jingyu;Zhang Hongli;Kuang Minchi;Shi Heng;Zhu Jihong;Qiao zhi;Zhou Wenqing(School of Electrical Engineering,Xinjiang University,Urumqi 830000,China;Department of Precision Instrument,Tsinghua University,Beijing 100084,China;Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China)
机构地区:[1]新疆大学电气工程学院,新疆乌鲁木齐830000 [2]清华大学精密仪器系,北京100084 [3]清华大学计算机科学技术系,北京100084
出 处:《系统仿真学报》2024年第6期1452-1467,共16页Journal of System Simulation
摘 要:针对传统强化学习在空战环境下探索能力差和奖励稀疏的问题,提出了一种基于课程学习的分布式近端策略优化(curriculum learning distributed proximal policy optimization,CLDPPO)强化学习算法。嵌入包含专家经验知识的奖励函数,设计了离散化的动作空间,构建了局部观测与全局观测分离的演员评论家网络。通过为无人机制定进攻、防御以及综合课程,让无人机从基本课程由浅入深开始学习作战技能,阶段性提升无人机作战能力。实验结果表明:以课程学习方式训练的无人机能以一定的优势击败专家系统和主流强化学习算法,同时具有空战战术的自我学习能力,有效改善稀疏奖励的问题。To address the limited exploration capabilities and sparse rewards of conventional reinforcement learning methods in air combat environment,a curriculum learning distributed proximal policy optimization(CLDPPO)reinforcement learning algorithm is proposed.A reward function informed by professional empirical knowledge is integrated,a discrete action space is developed,and a global observation and local value and decision network featuring separated global and local observations is established.A methodology for unmanned aerial vehicles UAVs is presented to acquire combat expertise through a sequence of fundamental courses that progressively intensify in their offensive,defensive,and comprehensive content.The experimental results show that the methodology surpasses the specialist system and the other mainstream reinforcement learning algorithms,which has the ability of the autonomous acquisition of air warfare tactics and can enhance the sparse rewards.
关 键 词:UAVS 空战 稀疏奖励 课程学习 分布式近端策略优化
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.124.139