检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晏涵 张尹馨[1] 黄战华[1] 王康年 Zhang Yanhan;Zhang Yinxin;Huang Zhanhua;Wang Kangnian(Key Laboratory of OptoElectronics Information Technology of Ministry of Education,Tianjin University,Tianjin 300072,China)
机构地区:[1]天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津300072
出 处:《激光与光电子学进展》2024年第8期256-262,共7页Laser & Optoelectronics Progress
摘 要:图像匹配能将待匹配图像变换到原有图像的坐标系中,在各种视觉任务中起着重要的作用。基于特征的图像匹配算法能够在图像中匹配到一些更具区分度的特征,与其他图像匹配方法相比,其具有高精度、高灵活性、高鲁棒性等特点。针对传统特征匹配算法匹配稀疏的问题,提出一种基于改进深度特征匹配算法的密集特征匹配方法。首先,通过VGG网络提取图像的一系列特征图,在初始特征图进行最邻近匹配计算单应性矩阵并进行视角变换;然后,基于特征图的频域匹配特点进行深层特征图融合,用于特征粗匹配;最后,基于粗匹配的结果在浅层特征图上进行特征细匹配用于校正特征匹配的结果。实验结果表明:所提算法提升了特征匹配的精度和匹配的特征数量。Image matching,which refers to transforming the image to be matched into the coordinate system of the original image,plays important roles in numerous visual tasks.The featurebased image matching method,which can find distinctive features in the image,is widely accepted because of its applicability,robustness,and high accuracy.For improving the performance of feature matching,it is important to obtain more feature matches with high matching accuracy.Aiming at the sparse matching problem of the traditional feature matching algorithm,we propose a dense feature matching method based on the improved deep feature matching algorithm.First,a series of feature maps of the image are extracted through the VGG neural network,and nearestneighbor matching is performed on the initial feature map to calculate the homography matrix and perform perspective transformation.Then,deep features are fused according to the frequencydomain matching characteristics of feature maps for coarse feature matching.Finally,fine feature matching is performed on the shallow feature map to correct the results of coarse feature matching.Experimental results indicate that the proposed algorithm is superior to other methods,as it obtains a larger number of matches with a higher matching accuracy.
关 键 词:机器视觉 卷积神经网络 特征融合 图像匹配 图像处理
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49