基于改进遗传算法的锂离子电池ECM模型参数辨识  

Parameter identification of lithium-ion battery ECM model based on improved genetic algorithm

在线阅读下载全文

作  者:鲍鑫 郑培[1] 李超 BAO Xin;ZHENG Pei;LI Chao(School of Energy and Power Engineering,Inner Mongolia University of Technology,Hohhot 010000,China;School of Transportation,Inner Mongolia University,Hohhot 010000,Inner Mongolia China)

机构地区:[1]内蒙古工业大学能源与动力工程学院,内蒙古呼和浩特010000 [2]内蒙古大学交通学院,内蒙古呼和浩特010000

出  处:《农业装备与车辆工程》2024年第6期102-107,共6页Agricultural Equipment & Vehicle Engineering

基  金:国家自然科学基金“数字孪生驱动的车联网脆弱性动态量化评估研究”(62362053);内蒙古自治区自然科学基金项目“严寒地区地铁-公交双层耦合网络建模及脆弱性研究”(2023MS07014)。

摘  要:可靠的动力电池等效电路(Equivalent Circuit Model, ECM)模型是电动汽车电池管理系统重要的技术支撑,而等效电路模型的精确性很大程度上取决于参数辨识精度。以容量3.5 A·h的三元锂离子电池为研究对象,采用双极化ECM模型构建锂离子电池模型,在此基础上提出一种基于改进遗传算法的参数识别方法,对模型中的参数进行辨识;基于所辨识的参数建立电池仿真模型,分别采用变流和恒流工况验证所构建的电池模型。结果表明,误差均控制在±0.02 V以内,所提出的改进遗传算法参数辨识方法具有较高的精度。The reliable power battery equivalent circuit (Equivalent Circuit Model, ECM) model is an important technical support for EV battery management system, and the accuracy of the ECM largely depends on the accuracy of parameter identification. Taking 3.5 A·h ternary lithium-ion battery as the research object, a dual-polarization ECM model was used to construct a lithium-ion battery model. On this basis, a parameter identification method based on improved genetic algorithm was proposed, and the parameters in the model were effectively identified. The battery simulation model was established based on the identified parameters, and the constructed battery model was verified by variable current and constant current conditions respectively, and the error was less than ±0.02 V. The results showed that the improved genetic algorithm parameter identification method had high precision.

关 键 词:锂离子电池 遗传算法 ECM模型 参数辨识 

分 类 号:TM912[电气工程—电力电子与电力传动] U469.7[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象