A Novel Analysis Approach of Uniform Persistence for an Epidemic Model with Quarantine and Standard Incidence Rate  

在线阅读下载全文

作  者:Song-bai GUO Yu-ling XUE Xi-liang LI Zuo-huan ZHENG 

机构地区:[1]School of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China [2]School of Mathematics and Statistics,Hainan Normal University,Haikou 571158,China [3]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [4]School of Mathematics and Information Science,Shandong Technology and Business University,Yantai 264005,China [5]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Acta Mathematicae Applicatae Sinica》2024年第3期695-707,共13页应用数学学报(英文版)

基  金:partially supported by the National Natural Science Foundation of China(Nos.11901027,11971273and 12126426);the Major Program of the National Natural Science Foundation of China(No.12090014);the State Key Program of the National Natural Science Foundation of China(No.12031020);the Natural Science Foundation of Shandong Province(No.ZR2018MA004);the China Postdoctoral Science Foundation(No.2021M703426);the Pyramid Talent Training Project of BUCEA(No.JDYC20200327);the BUCEA Post Graduate Innovation Project(No.PG2022143)。

摘  要:Inspired by the transmission characteristics of the coronavirus disease 2019(COVID-19),an epidemic model with quarantine and standard incidence rate is first developed,then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals,which means that the epidemic is uniformly persistent if the control reproduction number R_(c)>1.This approach can be applied to the related biomat hem at ical models,and some existing works can be improved by using that.In addition,the infection-free equilibrium V^(0)of the model is locally asymptotically stable(LAS)if R_(c)<1 and linearly stable if R_(c)=1;while V^(0)is unstable if R_(c)>1.

关 键 词:uniform persistence epidemic model control reproduction number QUARANTINE standard incidence rate 

分 类 号:O141.4[理学—数学] R181[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象