检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王猛 高树静[1] 张俊虎[1] 李海涛[1] WANG Meng;GAO Shujing;ZHANG Junhu;LI Haitao(College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China)
机构地区:[1]青岛科技大学信息科学与技术学院,山东青岛266061
出 处:《计算机测量与控制》2024年第6期42-50,共9页Computer Measurement &Control
基 金:山东省重点研发计划(2021SFGC0701);青岛市海洋科技创新专项(22-3-3-hygg-3-hy)。
摘 要:在工业施工过程中,工人安全已成为一个日益重要的问题,佩戴安全绳等安全装备是保护工人在高处工作时生命安全的重要措施;在现代化生产施工过程中,通过使用监控摄像设备结合人工智能算法的方式来检测工人佩戴安全绳等设备越发普遍,但安全绳由于细长、形状多变以及环境变化等因素较为难以准确识别;为解决以上问题,并确保能够在不同环境下准确识别安全绳,现提出一种使用YOLOv5的目标检测算法,首先通过改进的FasterNet模块进行上下文信息提取,在Neck网络中使用改进的多维动态卷积保留更多特征信息,使用WIoU_Loss损失函数来提高定位精度,在训练过程中使用动态调整学习率的策略;实验结果表明,改进后的算法在降低计算复杂度的情况下提高了3.0%的检测精度,mAP@0.5提高了4.3%,经过在实际场景应用,满足项目对实时检测精度及速度的要求。In the process of industrial construction,the safety of workers has become an increasingly important issue,wearing safety equipment such as safety rope is an important guarantee for the safety of workers during high-altitude operations.In the process of modern production and construction,surveillance camera equipment are widely used to detect workers wearing safety ropes and other equipment combined with artificial intelligence algorithm,but it is difficult for the safety rope to accurately identify due to factors such as slender,changeable shape and environmental changes.In order to solve the above problems and ensure that the safety rope can be accurately identified in different environments,an object detection algorithm based on YOLOv5 is proposed.Firstly,the improved FasterNet module is used to extract the context information,and the improved multidimensional dynamic convolution is used to preserve the more feature information in the Neck network.The WIoU_Loss loss function is used to improve the positioning accuracy,and dynamically adjust the learning rate in the training process.Experimental results show that under reducing the computational complexity,the improved algorithm improves the detection accuracy by 3.0%,and mAP@0.5 by 4.3%.By the application in actual scenarios,the proposed algorithm can meet the requirements of real-time detection accuracy and speed in the project.
关 键 词:安全绳目标检测 YOLOv5 FasterNet 多维动态卷积 WIoU_Loss
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.243.252