检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡翔远 陈晓桐 李荣昊 魏江南 李帅 赵红颖[1] CAI Xiangyuan;CHEN Xiaotong;LI Ronghao;WEI Jiangnan;LI Shuai;ZHAO Hongying(School of Earth and Space Sciences,Peking University,Beijing 100871,China)
机构地区:[1]北京大学地球与空间科学学院,北京100871
出 处:《全球定位系统》2024年第3期87-93,共7页Gnss World of China
基 金:国家自然科学基金(42130104)。
摘 要:树高是监测森林状况的重要参数,摄影测量法具有低成本、灵活的特性,是树高采集的重要方法之一.作为一种被动遥感方式,传统的摄影测量方法往往需要数量较多,重叠率较高的图像数据,这与传统图像特征的稀疏性有关.为了提高图像数量受限条件下的树高提取精度,提出将稀疏特征匹配和稠密像素匹配相结合,并使用对极约束过滤外点的方法,得到稠密且精度较高的匹配结果,并通过三维重建算法得到森林场景点云.该方法在少量图像的情况下就可以较为完整地重建森林场景并提取树高,将提取的树高与机载激光雷达(light detection and ranging,LiDAR)点云的结果进行对比,相关系数为0.91,最大误差为1.64 m.该算法只需要少量的重叠图像,这表明了该算法在处理高分辨率卫星图像方面具有一定潜力.Tree height is a crucial parameter for monitoring forest conditions and photogrammetry stands out as an essential method for tree height acquisition due to its low cost and flexibility.As a passive remote sensing approach,the traditional photogrammetric method often requires a substantial quantity of images with high overlap,which is associated with the sparsity of traditional image features.To enhance tree height extraction accuracy under limited image availability,a proposed approach combines sparse feature matching with dense pixel matching,by employing the epipolar constraint to filter outliers,dense and highly accurate matching results are obtained.The three-dimensional reconstruction algorithm is then applied to generate a point cloud representing the forest scene.This method demonstrates the capability to reconstruct the forest scene comprehensively and extract tree heights even with a small number of images.Comparison with results from LiDAR point clouds yields a correlation coefficient of 0.91 and a maximum error of 1.64 meters.Notably,the algorithm requires only a small number of overlapping images,indicating its potential in handling high-resolution satellite imagery.
分 类 号:P228[天文地球—大地测量学与测量工程] P231[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.122.164