检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王伟明 王为得 粟毅[1] 马青松[1] 姚冬旭[3] 曾宇平[3] WANG Weiming;WANG Weide;SU Yi;MA Qingsong;YAO Dongxu;ZENG Yuping(Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China;College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China;Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China)
机构地区:[1]国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室,长沙410073 [2]国防科技大学前沿交叉学科学院,长沙410073 [3]中国科学院上海硅酸盐研究所,上海200050
出 处:《无机材料学报》2024年第6期634-646,共13页Journal of Inorganic Materials
基 金:国家自然科学基金(52202077);国防科技重点实验室基金(6142907220303);国防科技基础加强计划资助(2022-JCJQ-LB-073)。
摘 要:功率半导体器件高电压、大电流、高功率密度的发展趋势,对器件中陶瓷基板的散热能力和可靠性提出了更高的要求,兼具高热导率和优异力学性能的氮化硅陶瓷作为功率半导体器件的首选散热基板材料受到了广泛关注。目前氮化硅陶瓷热导率的实验值与理论值存在较大差距,高温、长时间保温的制备条件不仅会使晶粒过分长大,削弱其力学性能,而且会造成成本高企,限制了其规模化应用。晶格氧缺陷是影响氮化硅陶瓷热导率的主要因素,通过筛选非氧化物烧结助剂降低体系中的氧含量,调节液相的组成和性质并构建“富氮-缺氧”的液相,调控液相中的溶解析出过程,促进氮化硅陶瓷晶格氧的移除及双峰形貌的充分发育,从而实现氮化硅陶瓷热导率-力学性能的协同优化是目前研究的热点。本文基于元素分类综述了当前国内外开发的非氧化物烧结助剂体系,着重从液相调节和微观形貌调控的角度介绍了非氧化物烧结助剂改善氮化硅陶瓷热导率的作用机理,分析了晶粒发育、形貌演变规律和晶格氧移除机制,并展望了高导热氮化硅陶瓷的未来发展前景。The development trend of high voltage,high current and high-power density of power semiconductor devices has raised the requirement for the heat dissipation capability and reliability of ceramic substrates in devices.Silicon nitride Si_(3)N_(4)ceramics,known for their high thermal conductivity and excellent mechanical properties,have emerged as a preferred thermal dissipation substrate material for high-power electronic devices.However,there is a significant gap between experimental and theoretical values of thermal conductivity in Si_(3)N_(4)ceramics.The long period of heat preservation during preparation leads to excessive grain growth,compromising mechanical properties and increasing costs,which hinders large-scale application.Lattice oxygen defects act as main factor limiting thermal conductivity of Si_(3)N_(4) ceramics.Now,researchers are exploring ways to promote removal of lattice oxygen and full development of bimodal morphology formation of Si_(3)N_(4),by selecting non-oxide sintering additives to reduce the oxygen content in the system,adjusting the composition and properties of the liquid phase,constructing a“nitrogen-rich-oxygen-deficient”liquid phase,and regulating the dissolution and precipitation process in the liquid phase.These efforts aim to the synergistic optimization of thermal conductivity-mechanical properties of Si_(3)N_(4)ceramics.Based on the elemental classification,we review the non-oxide sintering additives developed at domestic and abroad,explain how they improve the thermal conductivity of Si_(3)N_(4)ceramics from liquid-phase modulation and microscopic morphology control,analyze the grain development and morphology evolution laws,and discusse the mechanism of lattice oxygen removal.The out look on future development of high thermal conductivity Si_(3)N_(4) ceramics is also prospected.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7