检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱玉婷 袁晓[1] ZHU Yuting;YUAN Xiao(College of Electronic and Information,Sichuan University,Chengdu,Sichuan 610064,China)
出 处:《计算技术与自动化》2024年第2期98-104,共7页Computing Technology and Automation
摘 要:针对肿瘤细胞图像与正常组织图像之间具有强相似性、边界模糊以及染色变化大等特点,提出了基于TransUNet网络的优化改进分割模型。此分割模型在以TransUNet为主干网络的基础上于编码器部分引入注意力机制,抑制不相关的部分以突显深层特征的语义信息。同时,改变上采样过程中的融合方式,引入BiFusion模块进行选择性地融合,从而使特征数据能够保留更多高分辨率细节信息。该分割模型在Kaggle脑部低级别胶质瘤数据集上验证。实验结果表明,改进后算法的均交并比,召回率和平均精度均值分别为:97.31%,99.91%和98.72%,与目前医学图像分割的主流方法相比具有更优的性能。In view of the strong similarity between tumor cell image and normal tissue image,fuzzy boundary and large staining change,an improved optimization model based on TransUNet network is proposed.Based on TransUNet as the backbone network,this segmentation model introduces the attention mechanism into the encoder part to suppress the irrelevant part to highlight the semantic information of the deep features.At the same time,the fusion method in the up-sampling process is changed,and the BiFusion module is introduced for selective fusion,so that the feature data can retain more high-resolution details.The model is verified on the Kaggle brain low-grade glioma data set.The experimental results show that the M IoU,R and m AP of the improved algorithm are 97.31%,99.91%and 98.72%respectively,which has better performance compared with the current mainstream methods of medical image segmentation.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4