检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:诸才承 唐智礼[1] 赵鑫[1] 曹凡 ZHU Caicheng;TANG Zhili;ZHAO Xin;CAO Fan(College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出 处:《北京航空航天大学学报》2024年第6期1940-1951,共12页Journal of Beijing University of Aeronautics and Astronautics
基 金:国家自然科学基金(12032011)。
摘 要:多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些问题,但梯度搜索算法很难应用于多目标问题(MOPs)。在加权平均梯度的基础上引入随机权函数,发展多目标梯度算子,将其与基于参考点的第三代非支配排序遗传算法(NSGA-Ⅲ)结合,发展了多目标梯度优化算法(MOGBA)和多目标混合进化算法(HMOEA)。HMOEA在保留NSGA-Ⅲ良好的全局探索能力的同时,极大地增强了局部搜索能力。数值实验表明:HMOEA对于各种Pareto阵面都具有优秀的捕获能力,与典型的多目标算法相比效率提升了5~10倍。进一步将HMOEA应用于RAE2822翼型的多目标气动优化问题中,得到了理想的Pareto前沿,表明HMOEA是一种高效的优化算法,在气动优化设计中具有潜在的应用价值。Because of its strong global exploration ability,the current multi-objective evolutionary algorithm(MOEA)has received a lot of attention.However,its local search ability close to the optimal value is relatively weak,and for optimization problems involving large-scale decision variables,MOEA requires a very large number of populations and iterations,which results in a low optimization efficiency.Gradient-based optimization algorithms can overcome these problems well,but they are difficult to be applied to multi-objective problems(MOPs).Therefore,this paper introduced a random weight function on the basis of a weighted average gradient,developed a multi-objective gradient operator,and combined it with a non-dominated sorting genetic algorithm-Ⅲ(NSGA-Ⅲ)based on reference points to develop multi-objective optimization algorithm(MOGBA)and multi-objective Hybrid Evolutionary algorithm(HMOEA).The latter greatly enhances the local search capability while retaining the good global exploration capability of NSGA-Ⅲ.Experiments with numbers demonstrate that HMOEA can effectively capture a wide range of Pareto forms,and that it is 5–10 times more efficient than standard multi-objective algorithms.And further,HMOEA is applied to the multi-objective aerodynamic optimization problem of the RAE2822 airfoil,and the ideal Pareto front is obtained,indicating that HMOEA is an efficient optimization algorithm with potential applications in aerodynamic optimization design.
关 键 词:多目标优化 混合算法 进化算法 梯度方法 气动优化
分 类 号:V211.41[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.126.147