检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭莉莎 孙宇祥 薛宇凡 周献中[1,3] PENG Lisha;SUN Yuxiang;XUE Yufan;ZHOU Xianzhong(School of Engineering Management,Nanjing University,Nanjing 210008,China;School of Information Technology&Artificial Intelligence,Zhejiang University of Finance&Economics,Hangzhou 310018,China;Research Center for New Technology in Intelligent Equipment,Nanjing University,Nanjing 210008,China)
机构地区:[1]南京大学工程管理学院,江苏南京210008 [2]浙江财经大学信息技术与人工智能学院,浙江杭州310018 [3]南京大学智能装备新技术研究中心,江苏南京210008
出 处:《系统工程与电子技术》2024年第7期2310-2322,共13页Systems Engineering and Electronics
基 金:国家自然科学青年基金(62306135);教育部青年基金(23YJC630156);江苏省青年基金(BK20230783);南京大学技术创新基金(SC-2023-039)资助课题。
摘 要:近年来,将深度强化学习技术用于兵棋推演的智能对抗策略生成受到广泛关注。针对强化学习决策模型采样率低、训练收敛慢以及智能体博弈胜率低的问题,提出一种融合三支多属性决策(three-way multiple attribute decision making,TWMADM)与强化学习的智能决策技术。基于经典软表演者-批评家(soft actor-critic,SAC)算法开发兵棋智能体,利用TWMADM方法评估对方算子的威胁情况,并将该威胁评估结果以先验知识的形式引入到SAC算法中规划战术决策。在典型兵棋推演系统中开展博弈对抗实验,结果显示所提算法可有效加快训练收敛速度,提升智能体的对抗策略生成效率和博弈胜率。In recent years,the generation of intelligent confrontation strategies using deep reinforcement learning technology for wargaming has attracted widespread attention.Aiming at the problems of low sampling rate,slow training convergence of reinforcement learning decision model and low game winning rate of agents,an intelligent decision-making technology integrating three-way multiple attribute decision making(TWMADM)and reinforcement learning is proposed.Based on the classical soft actor-critic(SAC)algorithm,the wargaming agent is developed,and the threat situation of the opposing operator is evaluated by using TWMADM method,and the threat assessment results are introduced into the SAC algorithm in the form of prior knowledge to plan tactical decisions.A game confrontation experiment is conducted in a typical wargame system,and the results shows that the proposed algorithm can effectively speed up the training convergence,improve the efficiency of generating adversarial strategies and the game winning rate for agents.
关 键 词:兵棋推演 三支多属性决策 软表演者-批评家 强化学习 智能决策
分 类 号:TN95[电子电信—信号与信息处理] TP181[电子电信—信息与通信工程] E91[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31