检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程玉印 刘剑 向立 周自伟 王嘉弋 CHENG Yuyin;LIU Jian;XIANG Li;ZHOU Ziwei;WANG Jiayi(Yunnan Phosphate Haikou Co.Ltd.,Kunming 650000,China;Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China)
机构地区:[1]云南磷化集团海口磷业有限公司,昆明650000 [2]昆明理工大学国土资源工程学院,昆明650093
出 处:《矿冶》2024年第3期362-370,390,共10页Mining And Metallurgy
摘 要:如何准确对岩体分级是深埋地下工程的一个难题。针对单一岩体评价模型存在误判的问题,提出了Random Over Sampler (ROS)改进机器学习算法集成权重岩体质量评价方法。采用ROS算法对类别非均衡样本进行采样处理,经SVM、KNN、NB、DT、RBF、RF、LDA、LightGBM、XGBoost和GradientBoosting计算得到初步分级结果。将每一个分类器作为一个指标,确定每一个分类器的权重,建立ROS与机器学习算法的集成权重岩体质量评价模型,得到综合判别结果,大大降低了单一模型误判率。基于ROS改进机器学习算法集成权重提高了岩体质量评价模型的准确率,为岩体质量评价提供一种新的方法。Accurate Rock mass classification is a significant challenge in deep underground engineering.To address the issue of misjudgment in a single rock mass evaluation model,an integrated weighted rock mass quality evaluation method based on the Random Over Sampler(ROS)improved machine learning algorithm is proposed.The ROS algorithm is used to oversample unbalanced samples,and the preliminary classification results are obtained by SVM,KNN,NB,DT,RBF,RF,LDA,LightGBM,XGBoost and GradientBoosting.Each classifier is treated as an index to determine its weight,and an integrated weight rock mass quality evaluation model combining ROS and machine learning algorithm is established.This approach significantly reduces the misjudgment rate of individual models.The results demonstrate that the ROS-based improved machine learning algorithm increases the accuracy of rock mass quality evaluation models,providing a novel method for rock mass quality assessment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49